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Abstract

We study inclusive dijet azimuthal decorrelations in proton-proton collisions at the
CERN LHC invoking the hypothesis of parton Reggeization in t−channel exchanges at
high energies. In the parton Reggeization approach, the main contribution to the azimuthal
angle difference between the two most energetic jets comes from the process of fusion of two
Reggeized gluons into a pair of Yang-Mills gluons. We use the high-energy factorization
scheme with the Kimber-Martin-Ryskin unintegrated parton distribution functions and the
Fadin-Lipatov effective vertices and obtain a good agreement of our calculations with recent
measurements by the ATLAS and CMS Collaborations at the CERN LHC.

1 Introduction

The production of large transverse-momentum (pT ) hadron jets at the high-energy colliders
is an important source of information about dynamics of parton-parton interactions at small
distances and parton distribution functions (PDF), and a good test of perturbative quantum
chromodynamics (pQCD) [1]. The measurements of decorrelations in the azimuthal angle be-
tween the two most energetic jets, ∆ϕ, as a function of number of produced jets, give the chance
to separate directly leading order (LO) and next-to-leading orders (NLO) contributions in the
strong coupling constant αs. Furthermore, a precise understanding of the physics of events with
large azimuthal decorrelations is essential for the search of new physical phenomena with dijet
signatures by the CMS [2] and ATLAS [3] detectors at the LHC.

The total collision energies at the LHC,
√

S = 7 TeV or 14 TeV, sufficiently exceed the
transverse momenta of identified jets (0.1 < pT < 1.3 TeV). The recent theoretical studies
of single jet production at high energy show the dominance of the multi-Regge final states in
the inclusive production cross sections [4], which means a dominance of partonic subprocesses
involving t−channel parton exchanges. These t−channel partons become Reggeized, being
off-shell and carrying non-zero transverse momenta. As it has been shown by Lipatov and co-
authors, Reggeized gluons and quarks are the appropriate gauge-invariant degrees of freedom
of high-energy pQCD.

The parton Reggeization approach (PRA) [5, 6] is based on an effective quantum field theory
implemented with the non-Abelian gauge-invariant action which includes fields of Reggeized
gluons [7] and Reggeized quarks [8]. Recently, this approach was successfully applied to interpret
the pT−spectra of inclusive production of single jet [4], prompt-photon [9, 10], Drell-Yan lepton
pairs [11] and bottom-flavored jets [12, 13] at the Tevatron and LHC.

The single jet production is dominated by the multi-Regge kinematics (MRK), when only a
jet with a highest transverse momentum (leading jet) is produced in the central rapidity region,
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being strongly separated in rapidity from other particles. If the same situation is realized for
two or more the most energetic jets, then quasi-multi-Regge kinematics (QMRK) is at work.

In the present work we study azimuthal decorrelations between the two central jets with
the largest transverse momenta according to the measurements implemented by the CMS and
ATLAS Collaborations [2, 3]. The more extended analysis the reader can find in our work [14].

2 Dijet production in QMRK

In the high-energy Regge limit, when the collision energy is very high but the transverse mo-
menta of produced jets are fixed by the condition

√
S >> pT >> ΛQCD, the high-energy (un-

collinear) factorization works well instead of collinear parton model. In this case, the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) QCD-evolution of unintegrated PDFs [15] can be more adequate
approximation than the Dokshtser-Gribov-Lipatov-Altarelli-Parisi (DGLAP) QCD-evolution of
collinear PDFs [16]. It means, that we need to consider the processes with strong ordering in
rapidity at the MRK or QMRK conditions. We identify final-state jets and final-state partons,
and consider production of two partons in the central region of rapidity, assuming that there are
no any other partons with the same rapidity. To the LO in the parton Reggeization approach
we have the following partonic subprocesses, which describe production of two central jets in
proton-proton collisions: R+R → g+g (1), R+R → q+ q̄ (2), Q+R → q+g (3), Q+Q → q+q
(4), Q + Q′ → q + q′ (5), Q + Q̄ → q + q̄ (6), Q + Q̄ → q′ + q̄′ (7), Q + Q̄ → g + g (8), where R
is a Reggeized gluon, Q is a Reggeized quark, g is a Yang-Mills gluon, q is an ordinary quark,
q and q′ denote quarks of different flavors. Working in the center-of-mass (c.m.) frame, we
write the four-momenta of the incoming protons as P µ

1,2 = (
√

S/2)(1, 0, 0,±1) and those of the
Reggeized partons as qµ

i = xiP
µ
i + qµ

iT (i = 1, 2), where xi are longitudinal momentum fractions
and qµ

iT = (0,qiT , 0), with qiT being transverse two-momenta, and we define ti = −q2
iT = q2

iT .
The final partons have four-momenta k1,2 and they are on-shell and massless k2

1 = k2
2 = 0.

The effective gauge invariant amplitudes for the above mentioned subprocesses (1)-(8) can
be obtained using the effective Feynman rules from Refs. [7, 8, 17]. As usual, we introduce the
light-cone vectors n+ = 2P2/

√
S and n− = 2P1/

√
S, and define k± = k ·n± for any four-vector

kµ. Than we determine effective vertices:

Γ(+−)
µ (q1, q2) = 2

[(

q+
1 +

q2
1

q−2

)

n−
µ −

(

q−2 +
q2
2

q+
1

)

n+
µ + (q2 − q1)µ

]

, (1)

γ±
µ (q, p) = γµ + q̂

n±
µ

p±
, (2)

γ(+−)
µ (q1, q2) = γµ − q̂1

n−
µ

q−2
− q̂2

n+
µ

q+
1

, (3)

Γµν+(q1, q2) = 2q+
1 gµν − (n+)µ(q1 − q2)

ν − (n+)ν(q1 + 2q2)
µ +

t2

q+
1

(n+)µ(n+)ν ,

Γµν−(q1, q2) = 2q−2 gµν + (n−)µ(q1 − q2)
ν − (n−)ν(q2 + 2q1)

µ +
t1

q−2
(n−)µ(n−)ν , (4)

and the triple-gluon vertex

γµνσ(q, p) = (q − p)σgµν − (p + 2q)µgνσ + (2p + q)νgµσ. (5)

Here we present the two effective amplitudes of the all them for relevant subprocesses, while
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the full set of them can be found in the work [14]

Cgg, cd, µν
RR,ab (q1, q2, k1, k2) = g2

s

q+
1 q−2

4
√

t1t2

(

T1s
−1Γ(+−)σ(q1, q2)γµνσ(−k1,−k2) +

+ T3t
−1Γσµ−(q1, k1 − q1)Γ

σν+(k2 − q2, q2) −
− T2u

−1Γσν−(q1, k2 − q1)Γ
σµ+(k1 − q2, q2) −

− T1

(

n−
µ n+

ν − n−
ν n+

µ

)

− T2

(

2gµν − n−
µ n+

ν

)

− T3

(

−2gµν + n−
ν n+

µ

)

+

+ ∆µν+(q1, q2, k1, k2) + ∆µν−(q1, q2, k1, k2)

)

, (6)

where

T1 = fcdrfabr, T2 = fdarfcbr, T3 = facrfdbr, T1 + T2 + T3 = 0,

∆µν+(q1, q2, k1, k2) = 2t2n
+
µ n+

ν

(

T3

k+
2 q+

1

− T2

k+
1 q+

1

)

,

∆µν−(q1, q2, k1, k2) = 2t1n
−
µ n−

ν

(

T3

k−
1 q−2

− T2

k−
2 q−2

)

,

fabc are structure constants of color gauge group SU(3), g2
s = 4παs, and αs is a strong-coupling

constant.

Mqq̄
RR, ab = g2

s

q+
1 q−2

4
√

t1t2
εµ(k1)εν(k2)Ū(k1)

(

−s−1[T a, T b]γσΓ(+−)
σ (q1, q2)+

+ t−1T aT bγ−(k̂1 − q̂1)γ
+ + u−1T bT aγ+(k̂1 − q̂2)γ

−
)

V (k2), (7)

Mqg, b, µ
QR, a =

g2
sq

−
2

4
√

t2
εµ(k2)Ū(k1)

[

γ(−)
σ (q1, k1 − q1)t

−1
(

γµνσ(k2,−q2)n
+
ν + t2

n+
µ n+

σ

k+
2

)

×

×
[

T a, T b
]

− γ+(q̂1 − k̂2)
−1γ(−)

µ (q1,−k2)T
aT b −

− γµ(q̂1 + q̂2)
−1γ(−)

σ (q1, q2)n
+
σ T bT a +

2q̂1n
−
µ

k−
1

(

T aT b

k−
2

− T bT a

q−2

)]

U(x1P1), (8)

To calculate dijet production cross section we have found squared amplitudes |M|2 of above
mentioned subprocesses (1)-(8), where the bar indicates average (summation) over initial-state
(final-state) spins and colors. In general case, the squared amplitudes can be written as functions
of the Mandelstam variables s = (q1 +q2)

2, t = (q1−k1)
2, u = (q1−k2)

2, and invariant Sudakov
variables a1 = 2k1 · P2/S, a2 = 2k2 · P2/S, b1 = 2k1 · P1/S, b2 = 2k2 · P1/S, in the form

|M|2 = π2α2
SA

4
∑

n=0

WnSn, (9)

where A and Wn are process-dependent functions of variables s, t, u, a1, a2, b1, b2, t1, t2, S. The
exact analytical formulas for A and Wn are presented in the work [14]. Our definition of the
Reggeized amplitudes satisfy evident normalization to the QCD-amplitudes of the collinear
parton model:

lim
t1,t2→0

∫

dϕ1

2π

∫

dϕ2

2π
|M(t1, t2, ϕ1, ϕ2)|2 = |MPM |2. (10)

that has been checked for all obtained squared matrix elements.
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According to the high-energy factorization formalism, the proton-proton production cross
section for dijets is obtained by the convolution of squared matrix element |M| with the unin-
tegrated Reggeized PDFs Φp

g(q)(x1,2, t1,2, µ
2) at the factorization scale µ [20]. Here we present

an analytic formula for the case of the subprocess (1), and the other can be written in the same
manner:

dσ(pp → ggX)

dk1T dy1dk2T dy2d∆ϕ
=

k1T k2T

16π3

∫

dt1

∫

dφ1Φ
p
g(x1, t1, µ

2)Φp
g(x2, t2, µ

2)
|M(RR → gg)|2

(x1x2S)2
, (11)

where k1,2T and y1,2 are final gluon transverse momenta and rapidities, respectively, and ∆ϕ is

an azimuthal angle enclosed between the vectors ~k1T and ~k2T ,

x1 = (k0
1 + k0

2 + kz
1 + kz

2)/
√

S, x2 = (k0
1 + k0

2 − kz
1 − kz

2)/
√

S,

k0
1,2 = k1,2T cosh(y1,2), kz

1,2 = k1,2T sinh(y1,2).

Throughout our analysis the renormalization and factorization scales are identified and chosen
to be µ = ξk1T , where k1T is a the transverse momentum of the leading jet (k1T > k2T ) and
ξ is varied between 1/2 and 2 about its default value 1 to estimate the theoretical uncertainty
due to the freedom in the choice of scales. The resulting errors are indicated as shaded bands
in the figures.

The unintegrated PDFs Φp
g(x, t, µ2) are related to their collinear counterparts f p

g (x, µ2) by
the normalization condition

xfp
g (x, µ2) =

∫ µ2

dtΦp
g(x, t, µ2), (12)

which furnishes a correct transition from formulas in parton Reggeization approach to those in
the collinear parton model. In our numerical analysis, we adopt the prescription proposed by
Kimber, Martin, and Ryskin (KMR) [18] to obtain the unintegrated gluon and quark PDFs of
the proton from the conventional integrated ones. As input for these procedures, we use the
LO set of the Martin-Roberts-Stirling-Thorne (MRST) [19] proton PDFs as our default.

3 Results

Recently, CMS [2] and ATLAS [3] Collaborations have measured azimuthal decorrelations be-
tween the two central jets with the highest transverse momenta (leading jets) and rapidity
pT > 30 GeV, |y| < 1.1, and pT > 100 GeV, |y| < 0.8, correspondingly, in proton-proton
collisions at

√
S = 7 TeV. The measurements are presented for the region of π/2 < ∆ϕ < π as

normalized distributions F (∆ϕ) =
1

σ
×

(

dσ

d∆ϕ

)

, where σ =

∫ π

π/2

(

dσ

d∆ϕ

)

d∆ϕ. Additionally,

the ATLAS Collaboration presented the ∆ϕ distribution of events with ≥ 2, ≥ 3, ≥ 4, and ≥ 5
jets with pT > 100 GeV and |y| < 0.8 for the leading jets and |y| < 2.8 for all other jets.

The theoretical expectations based on the collinear parton model for ∆ϕ distributions in-
clude pQCD calculation in NLO (α4

S) for the three-parton final states and LO (α4
S) for the

four-parton final states [21]. As it has been demonstrated in Refs. [2, 3], these calcula-
tions describe data in the region of 2π/3 < ∆ϕ < π and overestimate data at ∆ϕ < 2π/3.
The agreement of parton model calculations with data can be achieved using the Monte Carlo
event generators (MC), such as: PYTHIA [22], HERWIG++ and MADGRAPH [23], which
include NLO pQCD matrix elements, different collinear PDFs, effects of hadronization and the
initial-state parton shower radiation (ISR). The latter is very important to simulate events at
∆ϕ < 2π/3 but introducing a new theoretically unknown parameter kISR which can be fixed
phenomenologically only.
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To obtain a distribution F (∆φ) in the frameworks of the PRA, we perform an integration of
the differential cross section (11) over the final-state parton transverse momenta k1T and k2T ,
as well as over the rapidities y1 and y2 in the intervals defined by the experiment. We take into
account contributions of all subprocesses (1)-(8), where quark flavors are taken q = u, d, s for
initial-state and final-state quarks. The upper limit for the Reggeized-gluon transverse momenta
squared t1 and t2 is taken as t1, t2 < k2

2T , where k2T is a smaller transverse momentum of a jet
from the pair of two leading jets. This condition arises from the experimental constraint that it is
impossible to separate final-state partons produced in the hard parton scattering phase from the
ones generated during QCD-evolution of PDFs. The BFKL evolution suggests a strong ordering
in rapidity but transverse momenta of partons in the QCD-ladder keep similar values. It means,
that the transverse momenta of partons generated in the initial-state evolution, described via
the unintegrated PDF must be smaller than transverse momenta of both measured leading jets.

The predictions of the LO PRA for the CMS measurements [2] of F (∆φ) distributions for
the two most energetic jets are shown in Fig. 1, which demonstrates a nice agreement in the
region of ∆ϕ ≥ 3π/4. As ∆ϕ decreases from 3π/4 to π/2, the theoretical expectations tend to
underestimate data more and more, up to a factor 5 at the 80 < pmax

T < 110 GeV and a factor
2 at the 200 < pmax

T < 300 GeV. This difference follows from our theoretical approximation:
we take into account only two-jet production subprocesses in the QMRK, like the RR → gg.
However, at ∆ϕ ' π/2, the contribution of three-jet production subprocess should be important.
One can find, the difference becomes smaller with growing of pmax

T , because the situation when
transverse momentum of leading jet is compensated by the one energetic jet in opposite direction
is more probable than the such compensation by two or more jets.

Our observations are confirmed in Fig. 2, where the disagreements between our calculations
and ATLAS data [3] are smaller than in the case of CMS data, because the low-pT cut made
by ATLAS Collaboration, pT > 110 GeV, exceeds the CMS one, pT > 30 GeV.

Certainly, the precise comparison of theoretical predictions in the LO PRA should be per-
formed when we separate only the two-jet production in the central rapidity region. The ATLAS
Collaboration presents the ∆ϕ−distributions for different number of final-state jets (see Fig. 1
in Ref. [3]) for the kinematic domain of pmax

T > 100 GeV and |y| < 0.8. We can extract
F (∆ϕ) for only two-jet production from these data as a difference between number of events:
n(2) = n(≥ 2) − n(≥ 3) or σ(2)F (∆ϕ, 2) = σ(≥ 2)F (∆ϕ,≥ 2) − σ(≥ 3)F (∆ϕ,≥ 3). The
original ATLAS data for F (∆ϕ,≥ 2) and extracted data for F (∆ϕ, 2) are shown together with
our predictions in Fig. 3, and a nice agreement of the two latter is obtained.

Summarizing results of a present analysis for dijet production at the LHC and our previous
study of bb̄−pair production at the Tevatron and LHC [12, 13], we find a strong difference of
theoretical interpretation of azimuthal decorrelation between leading and subleading jets, in the
collinear parton model and in the parton Reggeization approach. In the first case, an azimuthal
decorrelation at different values of ∆ϕ is provided by hard 2 → 3 (3π/4 < ∆ϕ < π), 2 → 4
(π/2 < ∆ϕ < 3π/4) partonic subprocesses, correspondingly. The explanation of data in the
region of ∆ϕ < π/2 in the framework of collinear parton model becomes possible only because
of initial-state radiation and hadronization effects, and an agreement of theory expectations
and data is achieved using MC generators only.

Oppositely, in the parton Reggeization approach, the azimuthal decorrelation is explained by
the coherent parton emission during the QCD-evolution, which is described by the transverse-
momentum dependent PDFs of Reggeized partons. Already in the LO approximation, at the
level of 2 → 2 subprocesses with Reggeized partons, we can account the main part of decorrela-
tion effect in dijet production, and we obtain a full description of data in bb̄−pair production.
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4 Conclusions

This good description of dijet azimuthal decorrelations is achieved in the LO parton Reggeiza-
tion approach, without any ad-hoc adjustments of input parameters. By contrast, in the
collinear parton model, such a degree of agreement calls for NLO and NNLO corrections and
complementary initial-state radiation effects and ad-hoc nonperturbative transverse momenta
of partons. In conclusion, the parton Reggeization approach has once again proven to be a
powerful tool for the theoretical description of QCD processes induced by Reggeized partons
in the high-energy limit. As it was shown by the recent studies [24], the one-loop calculations
in this formalism lead the results for the NLO effective vertices, consistent with the earlier
calculations based on unitarity relations [25]. These results open a possibility to extend the
calculations of hard processes in the parton Reggeization approach to the complete-NLO level.
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Figure 1: Normalized F (∆φ) distributions in several pmax
T regions at the

√
S = 7 TeV, |y| < 1.1

and pT > 30 GeV. The data are from the CMS Collaboration [2]. The curve corresponds to LO
parton Reggeization approach.
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Figure 2: Normalized F (∆φ) distributions in several pmax
T regions at the

√
S = 7 TeV, |y| < 0.8

and pT > 100 GeV. The data are from the ATLAS Collaboration [3]. The curve corresponds to
LO parton Reggeization approach.
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Figure 3: Normalized F (∆φ) distribution for 2 (open circles) and ≥ 2 (black circles) jets with
pT > 100 GeV, |y| < 0.8, pmax

T > 110 GeV and
√

S = 7 TeV. The data are from the ATLAS
Collaboration [3]. The curve corresponds to LO parton Reggeization approach.
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