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Abstract

Exclusive diffractive vector meson production (VMP) in ep (HERA) and in ultra-peripheral
pp collisions (LHC) is studied in a Regge pole model with a unique Pomeron comprising
”soft” and ”hard” dynamics.

1 Introduction

In this paper we study vector meson production (VMP) and deeply virtual Compton scattering
(DVCS) in ep (HERA) as well as ultra-peripheral pp collisions (LHC) by means of a Regge pole
model with a unique Pomeron combining ”soft” and ”hard” dynamics . The smooth transition
from ”soft” to ”hard” dynamics is demonstrated. We assume that:

1. Regge factorization holds, i.e. the dependence on the virtuality of the external particle
(photon) and the masses of the produced vector mesons enters only via the relevant vertex, not
the propagator;

2. there is only one Pomeron in nature and it is the same in all reactions [1]. It may be
complicated, e.g. containing many, at least two, components.
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Figure 1: Diagrams of DVCS (a) and VMP (b); (c) DVCS (VMP) amplitude in a Regge-
factorized form.

To reproduce the observed trend of hardening1 as Q̃2 increas a two-term amplitude, char-
acterized by a two-component - “soft” + “hard” - Pomeron, will be used. We stress that the
Pomeron is unique, but we construct it as a sum of two terms. Then, the amplitude is defined
as

A(Q̃2, s, t) = As(Q̃2, s, t) +Ah(Q̃2, s, t), (1)
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1In what follows we use the variable fQ2 = Q2 + M2
V as a measure of “hardness”.
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(s = W 2 is the square of the c.m.s. energy), such that the relative weight of the two terms

changes with Q̃2 in a right way, i.e. the ratio r = Ah/As increases as the reaction becomes
“harder” and v.v. It is interesting to note that this trend is not guaranteed “automatically”:
most of the related models show the opposite tendency, which may not be merely an accident
and whose reason should be better understood. This “wrong” trend can and should be corrected,

and in fact it was corrected [2] by means of additional Q̃2-dependent factors Hi(Q̃2), i = s, h

modifying the Q̃2 dependence of the amplitude in a such way as to provide increase of the weight

of the hard component with increasing Q̃2. To avoid conflict with unitarity, the rise with Q̃2 of
the hard component is finite (or moderate), and it terminates at some saturation scale, whose
value is determined phenomenologically. In other words, the “hard” component, invisible at

small Q̃2, gradually takes over as Q̃2 increases. An explicit example of these functions will be
given below.

2 Single-component Reggeometric Pomeron

We start by reminding the properties and some representative results based on the single-term
Reggeometric model [3].

The invariant scattering amplitude is defined as

A(Q2, s, t) = H̃e−
iπα(t)
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where
α(t) = α0 + α′t (3)

is the linear Pomeron trajectory, s0 is a scale for the square of the total energy s, a and b are
two parameters to be determined with the fitting procedure and mN is the nucleon mass. The

coefficient H̃ is a function providing the right behavior of elastic cross sections in Q̃2:

H̃ ≡ H̃(Q̃2) =
Ã0(

1 +
fQ2

Q2
0

)ns
, (4)

where Ã0 is a normalization factor, Q2
0 is the virtuality scale and ns is a real positive number.

In this model we use an effective Pomeron, which can be “soft” or “hard”, depending on
the reaction and/or kinematical region defining its “hardness”. In other words, the values of
the parameters α0 and α′ must be fitted to each set of the data. Apart from α0 and α′, the
model contains five more sets of free parameters, different in each reaction. The exponent in

Eq. (2) reflects the geometrical nature of the model: a/Q̃2 and b/2m2
N correspond to the “sizes”

of upper and lower vertices in Fig. 1c.
By using Eq. (4) with norm

dσel
dt

=
π

s2
|A(Q2, s, t)|2, (5)

the differential and integrated elastic cross sections become
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where

A0 = −
√
π

s0
Ã0.

The single-term model fails to fit both the high- and low-|t| regions properly, especially
when soft (photoproduction or low Q2) and hard (electroproduction or high Q2) regions are
considered. One of the problems of the single-term Reggeometric Pomeron model, Eq. (2), is
that the fitted parameters in this model acquire particular values for each reaction, which is
one of the motivations for its extension to two terms (next Section).

The VMP results clearly show the hardening of Pomeron in the change of α0 and α′ when
going from light to heavy vector mesons. In the ρ0 case, a single exponent of the type AeBt is
not sufficient to reproduce the differential cross section above |t| > 0.5 in the electroproduction
and especially in photoproduction. This is the reason why it is so difficult to describe ρ0

production in the whole kinematic range within a single-term Pomeron model. These two
phenomena (“hardening” of Pomeron trajectory and problems with ρ0 production) motivate
the introduction of a two-component Pomeron.

It is also interesting to note that the effective Pomeron trajectory for DVCS (α0 = 1.23,
α′ = 0.04) is typically ”hard”, in contradiction with expectations that it should be ”soft” at
low-Q2.

3 Two-component Reggeometric Pomeron

3.1 Amplitude with two, “soft” and “hard”, components

Now we introduce the universal, “soft” and “hard”, Pomeron model. Using the Reggeometric
ansatz of Eq. (2), we write the amplitude as a sum of two parts, corresponding to the “soft”
and “hard” components of a universal, unique Pomeron:

A(Q2, s, t) = H̃s e
−iπ

2
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(8)
Here s0s and s0h are squared energy scales, and ai and bi, with i = s, h, are parameters to be
determined with the fitting procedure with

H̃s ≡ H̃s(Q̃2) =
Ãs(

1 +
fQ2

Q2
s

)ns
, H̃h ≡ H̃h(Q̃2) =

Ãh

( fQ2

Q2
h

)

(
1 +

fQ2

Q2
h

)nh+1 , (9)

where Ãs and Ãh are normalization factors, Q2
s and Q2

h are scales for the virtuality, ns and nh
are real positive numbers. Each component of Eq. (8) has its own, “soft” or “hard”, Regge
(here Pomeron) trajectory:

αs(t) = α0s + α′
st, αh(t) = α0h + α′

ht.

As input we use the parameters suggested by Donnachie and Landshoff [2],

αs(t) = 1.08 + 0.25t, αh(t) = 1.40 + 0.1t.

The “Pomeron” amplitude (8) is unique, valid for all diffractive reactions, its “softness” or

“hardness” depending on the relative Q̃2-dependent weight of the two components, governed

by the relevant factors H̃s(Q̃
2) and H̃h(Q̃2).

In fitting Eq. (8) to the data, we have found that the parameters assume rather large errors
and, in particular as,h are close to 0. Thus, in order to reduce the number of free parameters, we
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simplified the model, by fixing as,h = 0 and substituting the exponent 2
(
as,h

fQ2
+

bs,h

2m2
N

)
with bs,h

in Eq. (8). The proper variation with Q̃2 will be provided by the factors H̃s(Q̃2) and H̃h(Q̃2).
Consequently, the scattering amplitude assumes the form

A(s, t,Q2,M2
V ) = H̃s e

−iπ
2
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(
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−iπ
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The “Reggeometric” combination 2
(
as,h

fQ2
+

bs,h

2m2
N

)
was important for the description of the

slope B(Q2) within the single-term Pomeron model, but in the case of two terms the Q2-
dependence of B can be reproduced without this extra combination, since each term in the
amplitude (10) has its own Q2-dependent factor H̃ s,h(Q

2).
By using the amplitude (10) and Eq. (5), we calculate the differential and elastic cross

sections by setting, for simplicity, s0s = s0h = s0 to obtain

dσel
dt

= H2
s e

2{L(αs(t)−1)+bst} +H2
he

2{L(αh(t)−1)+bht} (11)
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2
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)
,
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+ 2HsHhe
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B2 + L2
. (12)

In these two equations we use the notation

L = ln (s/s0) ,
φ0 = π

2 (α0s − α0h),
B = Lα′

s + Lα′
h + (bs + bh),

L = π
2 (α′

s − α′
h),
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As(
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with

As,h = −
√
π

s0
Ã s,h.

Finally, we notice that amplitude (10) can be rewritten in the form

A(s, t,Q2,Mv
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−iπ
2
αs(t)

(
s

s0

)αs(t)

e
bst−ns ln

„
1+

g
Q2

g
Q2

s

«

+Ãhe
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where the two exponential factors e
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can be
interpreted as the product of the form factors of upper and lower vertices.

Numerical fits to the data can be found in Refs. [3, 4].
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4 Balancing between the “soft” and “hard” dynamics

Here we illustrate the important and delicate interplay between the “soft” and “hard” com-
ponents of our unique Pomeron. Since the amplitude consists of two parts, according to the
definition (1), it can be written as

A(Q2, s, t) = As(Q
2, s, t) +Ah(Q

2, s, t). (14)

Consequently, according to Eqs. (11) and (12), the differential and elastic cross sections contain
also an interference term between “soft” and “hard” parts, so they read

dσel
dt

=
dσs,el
dt

+
dσh,el
dt

+
dσinterf,el

dt
(15)

and
σel = σs,el + σh,el + σinterf,el, (16)

respectively.

Figure 2: Interplay between soft (green line), hard (blue line) and interference (yellow line)

components of the cross section σi,el (left plot) and Ri(Q̃2, t) (right plot) as functions of Q̃2, for
W = 70 GeV

By means of Eqs. (15) and (16) we can now define the following ratios:

Ri(Q̃2,W, t) =

dσi,el

dt
dσel
dt

(17)

and

Ri(Q̃2,W ) =
σi,el
σel

, (18)

where i stands for {s, h, interf}.
Fig. 2 shows the interplay between the components for both σi,el and Ri(Q̃2, t), as functions

of Q̃2, for W = 70 GeV. Both plots show that not only Q̃2 is the parameter defining softness

or hardness of the process, but such is also the combination of Q̃2 and t. On the whole, it can

be seen from the plots that the soft component dominates in the region of low Q̃2 and t, while

the hard compontent dominates in the region of high Q̃2 and t.
As expected, the ”soft” term dominates at low values of Q̃2”, replaced by the soft one at high

Q̃2 (Fig 2, right panel). The contribution from the interference term is considerable, however
it remains below the two (except for intermediate values of Q̃2. The account for absorption
corrections (shadowing, neglected in the present study) is expected to suppress the contribution
from the interference term.
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5 Hadron-induced reactions: high-energy pp scattering

Hadron-induced reactions differ from those induced by photons at least in two aspects. First,
hadrons are on the mass shell and hence the relevant processes are typically “soft”. Second, the
mass of incoming hadrons is positive, while the virtual photon has negative squared “mass”.
Our attempt to include hadron-hadron scattering into the analysis with our model has the
following motivations: a) by vector meson dominance (VMD) the photon behaves partly as
a meson, therefore meson-baryon (and more generally, hadron-hadron) scattering has much
in common with photon-induced reactions. Deviations from VMD may be accounted for by
proper Q2 dependence of the amplitude (as we do hope is in our case!); b) of interest is the
connection between space- and time-like reactions; c) according to recent claims the highest-
energy (LHC) proton-proton scattering data indicate the need for a “hard” component in the
Pomeron (to anticipate, our fits do not support the need of any noticeable “hard” component
in pp scattering).

Our aim here is not a high-quality fit to the pp data; that would be impossible without
the inclusion of subleading contributions and/or the Odderon. Instead we normalized the
parameters of our leading Pomeron term according to recent fits by Donnachie and Landshoff
[2] including, apart from a soft term, also a hard one.

The pp scattering amplitude is written in the form similar to the amplitude (10) for VMP or
DVCS, the only difference being that the normalization factor is constant since the pp scattering
amplitude does not depend on Q2:

App(s, t) = Apps e−i
π
2
αs(t)

(
s

s0

)αs(t)

ebst +Apph e−i
π
2
αh(t)

(
s

s0

)αh(t)

ebht. (19)

We fixed the parameters of Pomeron trajectories in accord with those of Refs. [2])

αs(t) = 1.084 + 0.35t, αh(t) = 1.30 + 0.10t.

With these trajectories the total cross section

σtot =
4π

s
Im A(s, t = 0) (20)

was found compatible with the LHC data. From the comparison of Eq. (20) to the LHC data
we get

Apps = −1.73 mb · GeV2, Apph = −0.0012 mb · GeV2.

The parameter bs was determined by fitting the differential and integrated elastic cross sections
to the data.

Among the remaining open problems are:

• account for sub-leading Regge contributions, neglected in the present study. They must
be included in any extension of the model to lower energies (below 30 GeV);

• the Q̃2 dependence of the scattering amplitude introduced in the present paper empirically
has to be compared with the results of unitarization and/or QCD evolution;

• the “soft” component of the Pomeron dominates the region of small |t| and small Q̃2.
Hence, a parameter responsible for the “softness” and/or “hardness” of the processes
should be a combination of t and Q2.
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6 VMP in pp at the LHC

The vector meson production (VMP) cross section can be written in a factorized form, see
[5]. The distribution in rapidity Y of the production of a vector meson V in the reaction
h1 + h2 → h1V h2, (where h may be a hadron, e.g. proton, or a nucleus, pPb, PbPb,...) is
calculated according to a standard prescripion based on the factorization of the photon flux
and photon-proton cross section (see below).

Generally speaking, the γp cross section depends on three variables: the total energy of
the γp system, W , the squared momentum transfer at the proton vertex, t and virtuality
Q̃2 = Q2 + M2

V , where Q2 = −q2 is the photon virtuality. Since, by definition, in ultrape-
ripheral, b >> R1 + R2 collisions, where b is the impact parameter, i.e. the closest distance
between the centres of the colliding particles/nuclei and R is their radii, photons are nearly real,
Q2 = 0, and M 2

V remains the only measure of ”hardness” (NB: this might not be true for the
peripheral b ∼ R1 +R2 collisions and in Pomeron or Odderon exchange instead of the photon).
Finally, the t-dependence (shape of the diffraction cone) is known to be exponential. It can be
either integrated, or kept explicit. Extending this parametrization to include a t−dependent
exponential is easy (see below). In any case, σγp→V p(Q̃

2, t,W ), is well known from HERA.
We start with a simple parametrization of the σγp→V p(W ) cross section, σγp→V p(W ) =∫ tthr

tm
dσ
dt , suggested by Donnachie and Landshoff: σ(W ) ∼W δ, δ ≈ 0.8.

The differential cross section as a function of rapidity reads:

dσ(h1 + h2 → h1 + V + h2)

dY
= ω+

dNγ/h1
(ω+)

dω
σγh2→V h2(ω+) + ω−

dNγ/h2
(ω−)

dω
σγh1→V h1(ω−),

(21)

where
dNγ/h(ω)

dω is the ”equivalent” photon flux [5]
dNγ/h(ω)

dω = αem
2πω [1 + (1 − 2ω√

s
)2](lnΩ − 11

6 +
3
Ω − 3

2Ω2 + 1
3Ω3 ) and σγp→V p(ω) is the total (integrated over t) cross section of the vector

meson photoproduction subprocess (same as e.g. at HERA, see [3, 4]). Here ω is the photon
energy, ω = W 2

γp/2
√
spp with ωmin = M2

V /(4γLmp), where γL =
√
s/(2mp) is the Lorentz

factor (Lorentz boost of a single beam), e.g., for pp at the LHC for
√
s = 7 TeV, γL = 3731.

Furthermore, Ω = 1 + Q2
0/Q

2
min, Q

2
min = ω/γ2

L, Q
2
0 = 0.71GeV 2, x = MV e

(−y)/
√
s, Y ∼

ln(2ω/mV ) is rapidity. The subscripts ± should be respected following Eq. (21). Furthermore
we have: Ω = 1 + Q2

0/Q
2
min, where Q2

0 = 0.71, Q2
min = ω/γ2

L, ω = mV e
Y /2, hence Ωi =

1 + 0.71γ2
L, γ2

L = 7/(2mp) ≈ 3.57, mV=J/ψ = 3.1,
√
s = 7, αem/(2π) ≈ 10−3, hence Q2

min ≈
5.54eY , Ω = 1 + 3.9e−Y . For definiteness we fix: a) the colliding particles are protons; b) the
produced vector meson V is J/ψ, and c) the collision energy

√
s = 7 TeV. We comprise the

constants in A = αem/(2π), c = Q2
0γ

2
L. (Notice that the shape of the distribution in Y is very

sensitive to the value (and the sign) of the constant c!). The i = ± signs of ω correspond to the
first or second term in Eq. (21), respectively, ω± ∼ e±Y .

7 Corrections for rapidity gap survival probabilities

The above results may be modified by initial and final state interactions, alternatively called
rescattering corrections. The calculation of these corrections is by far not unambiguous, the
result depending both on the input and on the unitarization procedure chosen. The better (more
realistic) the input, the smaller the unitarity (rapidity gap survival probability) corrections.
Since this is a complicated and controversial issue per se deserving special studies beyond the
scope of the present paper, to be coherent with the ”common trend”, we use familiar results
from the literature. The standard prescription is to multiply the scattering amplitude (cross
section) by a factor (smaller than one), depending on energy and eventually other kinematic
variables.

More details and fits to the data can be found in Ref. [5].
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