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Abstract

A mechanism of radiatively induced breaking of the conformal symmetry in the Standard
Model is suggested. The system of one scalar (Higgs) and one fermion (top-quark) fields with
Yukawa and φ4 interactions is considered. The infrared instability of the Coleman-Weinberg
effective potential for this system leads to the appearance of a finite renormalization scale
and thus to breaking of the conformal symmetry. Finite condensates of both scalar and
spinor fields appear. It is shown that the top quark condensate can supersede the tachyon
mass of the Higgs field. The Higgs boson is treated as an elementary scalar and the standard
mechanism of electroweak symmetry breaking remains unchanged. The difference from the
Standard Model appears in the value of the Higgs boson self-coupling constant.

1 Introduction

Recently the major LHC experiments reported upon the discovery of a boson with the mass of
about 125 GeV [1, 2]. Further experimental studies [3, 4] showed that this particle behaves very
much like the Higgs boson of the Standard Model (SM) [5]. Nevertheless, the question about
the fundamental mechanism(s) of mass generation is far beyond the final resolution. Moreover,
there is a number of indirect evidences that the conformal symmetry (CS) might be the proper
feature of the true fundamental theory, while the SM is just an effective theory with a softly
broken CS, see e.g. [6] and references therein.

According to the general wisdom, all SM particles (may be except neutrinos) own masses
due to “interaction” with the Higgs boson vacuum expectation value. The latter emerges after
the spontaneous breaking of the O(4) symmetry in the scalar sector [7, 8]. In the SM, one deals
with the potential

VHiggs(Φ) = λ(Φ†Φ)2 + µ2Φ†Φ, (1)

where one component of the complex scalar doublet field Φ =

(

Φ+

Φ0

)

acquires a non-zero

vacuum expectation value 〈Φ0〉 = v/
√

2 if µ2 < 0 (the vacuum stability condition λ > 0 is
assumed). Note that the tachyon-like mass term in the potential is crucial for this construction.
In contrast to the O(4) spontaneous symmetry breaking (SSB), it breaks the conformal sym-
metry explicitly being the only one fundamental dimensionful parameter in the SM. We recall
that the explicit conformal symmetry breaking in the Higgs sector gives rise to the naturalness
(or fine tuning) problem in the renormalization of the Higgs boson mass. That is certainly the
most unpleasant feature of the SM.
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2 The naturalness problem

Let us look at some details of the naturalness problem. In the one-loop approximation the
Higgs boson mass gets huge corrections due to quadratically divergent amplitudes:

M2
H = (M0

H)2 +
3Λ2

8π2v2

[

M2
H + 2M2

W + M2
Z − 4m2

t

]

, (2)

where Λ is an ultraviolet cut-off parameter. Certainly it is unnatural to have a huge hierarchy
between MH and M0

H
1. There are two general ways to solve the problem:

— either to exploit some (super)symmetry to cancel out the huge terms,
— or to introduce some new physics at a scale not very far from the electroweak (EW) one, i.e.

making Λ being not large.
One can find in the literature quite a lot of models for both options. Actually, since the

(super)symmetry is not observed experimentally at the EW scale, the first way besides the
introduction of the symmetry requires application of a mechanism of its breaking at some
energy scale close to the EW one. On the other hand, the experimental data coming from
modern accelerators and rare decay studies disfavors most of scenarios of new physics with
scales up to about 1 TeV and even higher. Moreover, it was shown that the measured value of
the Higgs boson mass makes the SM being self-consistent up to very high energies of the order
1011 GeV [9] or even up to the Planck mass scale [10, 11]. Direct and indirect experimental
searches push up and up possible energy scale of new physical phenomena. So the naturalness
problem becomes nowadays more and more prominent. And the question, why the top quark
mass, the Higgs boson mass, the vacuum expectation value v, and the electroweak scale itself
are of the same order becomes more and more intriguing.

The correction (2) comes from Feynman diagrams with boson single-propagator loops (tad-
poles) and from the two-point function with two top-quark propagators. The latter actually is
reduced to a top quark tadpole:

−Nc

∫

Λt

d4k

iπ2

Tr(k̂ + mt)((p̂ − k̂) + mt)

(k2 − m2
t )((p − k)2 − m2

t

→ −4Nc

∫

Λt

d4k

iπ2

1

k2 − m2
t

+ O(m2
t )

= −4NcA0(m
2
t ,Λ

2
t ) + O(m2

t ), (3)

where A0 is the standard Passarino-Veltman function.
One the other hand, we have the following standard formal definition of the quark conden-

sate:

〈q̄ q〉 ≡ −NC

∫

Λq

d4k

iπ2

Tr(k̂ + mq)

k2 − m2
q + iε

∼ −4NCmqA0(m
2
q,Λ

2
q). (4)

So, the top quark contribution to Eq. (2) is formally provided by its condensate value. Our
conjecture is that the formal correspondence has a deep physical meaning and reveals itself not
only here.

We claim that the very existence of the quark condensate comes out from the QFT rules. But
its value of course depends on the details of the model. In particular, the value of the light quark
condensate is rather well known from low-energy strong interactions, 3

√

〈q̄ q〉 ' −250 MeV. The
possibility to extract this number from observables if provided by the presence of [non-trivial]
non-perturbative interactions at the corresponding energy scale. On the other hand, nothing at
all is known from the phenomenology concerning the value of the top quark condensate. That is
just because the energy scale of the top quark mass allows only perturbative QCD interactions,

1We stress that M
0

H here should be directly related to the tachyon-like mass parameter in the initial La-
grangian, where it appears as a fundamental scale.
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which are not sensitive to the condensate2. Note also, that it is clear that the scale of the
light quark condensate is provided by the ΛQCD scale: 〈q̄ q〉 ∼ −MqΛ

2
QCD, where Mq is the

constituent quark mass which in its turn also has the same scale Mq ∼ ΛQCD.

3 Coleman-Weinberg effective potential in the SM

Let us now consider a simple model with one scalar field φ and one fermion field f . We demand
the conformal symmetry for the model. The symmetry allows3 the existence of two types of
interactions in this models: the φ4 self-interaction of the scalar and the Yukawa term. So we
start with the classical potential

Vcl = λφ4
c/4! + yφcf̄cfc, (5)

where we used the notation of Ref. [12], in particular the subscript “c” underlines that φc and fc

are classical fields and they obey the conformal symmetry. The standard one-loop calculation
of the effective potential gives two contributions: the one from scalar loops, and the one from
fermion loops:

∆Vsc =
1

2

∫

d4k

(2π4)
ln

(

1 +
λφ2

c

2k2

)

→ λΛ2

256π2
φ2

c +
λ2φ4

c

256π2

(

ln
λφ2

c

2Λ2
− 1

2

)

, (6)

∆Vf = −4NCTr

∫

d4k

(2π4)
ln

(

1 +
yφc(k̂ + mf )

k2 − m2
f

)

→ −4NC
ymfΛ2

16π2
φc

−4NC

y2m2
fφ2

c

32π2

(

ln
ymfφc

Λ2
− 1

2

)

+ . . . (7)

Due to the condition of the classical conformal symmetry, we have to remormalize the first
term on the right hand side of Eq. (6) to zero. On the other hand, it is clear that the effective
potential possesses infrared divergence at φ = 0. So, some energy scale M should be introduced
to renormalize the logarithmic term. As demonstrated by S. Coleman and E. Weinberg, that
induces a spontaneous breaking of the conformal symmetry and leads to the appearance of a
non-zero mass and a non-zero vacuum expectation value of φ. Obviously, if we have 〈φ〉 6= 0
in a model with Yukawa interactions, we automatically get a mass for the fermion. Then the
second contribution (7) to the effective potential emerges. Note that the conformal symmetry
doesn’t require to drop (i.e. renormalize to 0) the first term on the right hand side there, since
it is proportional to mf which is zero in the unbroken phase. This term, is again nothing else
but the tadpole contribution, i.e. the fermion condensate. In this way we have two phases: the
classical one with

mφ = mf ≡ 0, 〈φ〉 ≡ 0, 〈f̄ f〉 ≡ 0

and the one with spontaneously broken CS:

mφ ∼ mf ∼ M, 〈φ〉 ∼ M, 〈f̄ f〉 ∼ −M 3,

where M is the renormalization scale, and we assumed that the coupling constants are not
extremely small λ ∼ y ∼ 1.

So, we clearly see that system (5) is unstable in the infrared region, which leads to the effect
of dimensional transmutation. According to the logic of the original paper [12], the scale comes
to the model somewhere from outside the theory via the renormalization procedure. Another
crucial point is the question about stability and perturbativity in the phase with the broken
conformal symmetry.

2Due to the Furry theorem the coefficient before the fermion tadpole with vector vertex is zero. While the
tadpole itself (with a scalar vertex) can be non-zero.

3For terms in the Lagrangian of a renormalizable QFT model allowed is practically equivalent to must have.
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4 Dimensional Transmutation in the SM

We suggested [13] the following minimal modification of the Standard model: let us drop the
tachyon mass term from the Lagrangian. We take the most intensive interaction of the Higgs
filed h

Lint = −λ

4
h4 − yt√

2
h t̄t, (8)

where h is related to the initial field Φ in the standard way. In this case we have a model with
a classical conformal invariance. We claim that the apparent breaking of this symmetry can
happen spontaneously because of the infrared instability at the quantum level. Obviously, in
such a case, see e.g. Ref. [14], the softly broken classical symmetry will protect the Higgs boson
mass from rapid running in the UV region. So let us look at a stable solution in the broken
phase. The leading contribution to the Coleman-Weinberg effective potential comes from the
top quark tadpole:

Veff(h) ≈ λ

4
h4 +

yt√
2
〈t̄ t〉h. (9)

Naturally we choose the electroweak energy scale as the (re)normalization point. Than all
dimensionful parameters in the effective potential are defined by this scale. The extremum
condition for the potential dVcond/dh|h=v = 0 yields the relation

λv3 = − yt√
2
〈t̄ t〉. (10)

It follows from the fact that the Higgs field has a zero harmonic v in the standard decomposition
of the field h over harmonics h = v + H, where H represents excitations (non-zero harmonics)
with the condition

∫

d3xH = 0. The Yukawa coupling of the top quark yt = 0.995(5) is
known from the experimental value of top quark mass mt = vyt/

√
2 ' 173.2(9) GeV [15], and

v = (
√

2GFermi)
−1/2 ≈ 246.22 GeV is related to the Fermi coupling constant derived from the

muon life time measurements. So, the spontaneous symmetry breaking yields the potential
minimum which results in the non-zero vacuum expectation value v and the Higgs boson mass.
In fact, the substitution h = v + H gives

Veff(h) = Veff(v) +
m2

H

2
H2 + λ2vH3 +

λ

4
H4, (11)

which defines the scalar particle mass as

m2
H = 3λv2. (12)

We stress that this relation is different from the one (m2
H = 2λv2) which emerges in the SM

with the standard Higgs potential (1).
With the aid of Eqs. (10) and (12), the squared scalar particle mass can be expressed in

terms of the top quark condensate:

m2
H = −3yt〈t̄ t〉√

2v
. (13)

To get mH = 125.7 GeV we need

〈t̄ t〉 ≈ −(122 GeV)3. (14)

As discussed above, such a large value of the top quark condensate does not affect the low
energy QCD phenomenology. Since heavy quark condensates do not contribute to observed
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QCD quantites (e.g. via sum rules), we do not have any experimental or theoretical limits on
the top condensate value, see [16] and references therein.

Note that the energy scale of the top quark condensate appears to be the same as the general
electroweak one. We believe that the scale of light quark condensate is related to the scale of the
conformal anomaly in QCD. At the same time those anomalous properties of the QCD vacuum
lead to the constituent mass of a light quark to be of the order 300 MeV. As concerning the top
quark, some anomalous properties of the relevant vacuum give rise to the mass of this quark4

and to the condensate being of the same energy scale.
One can note that even we have dropped the scalar field mass term from the classical

Lagrangian, it will re-appear after quantization and subsequent renormalization. In fact, such
a counter-term in the Higgs sector is necessary. But as described in Ref. [14], the conformal
symmetry of the classical Lagrangian will lead to just the proper quantity in the mass term
being consistent with all other quantum effects. A similar situation takes place in QCD: the
chiral symmetry at the quark level re-appear at the hadronic level even so that the breaking is
obvious [17].

In conclusion, we suggest to apply the Coleman-Weinberg mechanism of dimensional trans-
mutation to induce spontaneous conformal symmetry breaking in the Standard Model. This
enables us to avoid the problem of the regularization of the divergent tadpole loop integrals by
relating them to condensate values hopefully extracted from experimental observations. The
top quark condensate can supersede the tachyon-like mass term in the Higgs potential. The
suggested mechanism allows to establish relations between condensates and masses including
the Higgs boson one. In a sense, we suggest a simple bootstrap between the Higgs and top fields
(and their condensates). We underline that we consider the Higgs boson to be an elementary
particle without introduction of any additional interaction beyond the SM contrary to various
technicolor models. After the spontaneous symmetry breaking in the tree level Lagrangian, the
difference from the SM appears only in the value of the Higgs boson self-coupling λ. The latter
hardly can be extracted from the LHC data, but it will be certainly measured at a future linear
e+e− collider.
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