Timing-related observables for UHECR composition studies.^a

Grigory I. Rubtsov

Institute for Nuclear Research of the Russian Academy of Sciences

The 4rd International Workshop on The Highest Energy Cosmic Rays and Their Sources Moscow, May 21, 2008

^{*a*} work done with D. S. Gorbunov and S. V. Troitsky

Timing-related observables for UHECR composition studies."

New experiments are more precise

- Modern EAS ground arrays measure time-resolved signal
 - KASCADE
 - Pierre Auger
 - TA/TALE
 - Yakutsk (several detectors on, modernization proposals)

- Time-resolved signal provides \sim 100 times more raw data

G. Rubtsov, Timing-related observables

Timing is important

- For arrival direction reconstruction from the beginning of times
- For composition studies in use now
- For primary energy estimation may be used (e.g. AGASA delayed particles issue)

Timing is important

- For arrival direction reconstruction from the beginning of times
- For composition studies in use now
- For primary energy estimation may be used (e.g. AGASA delayed particles issue)

...but complicated:

- large amount of data
- small-scale fluctuations are significant
- thinning procedure does not respect shower time-structure

There are many observables

One may imagine a variety of quantities which may be extracted from the time-resolve data. We would discuss three examples:

- Shower front curvature (extracted from shower front t(r))
- Rise time t_r (or shower front thickness), integral signal rise from 10% to 50%.
- Integral signal for the first τ nanoseconds

$$\sigma(\tau) = \int_{t(r)}^{t(r)+\tau} S(t)dt$$
(1)

G. Rubtsov, Timing-related observables

Timing-related observables for UHECR composition studies.

Public shower library

Livni - the public database of artificial extensive air showers generated without thinning

- The library currently contains 90 showers, with primary energies 10¹⁷—10¹⁸ eV, different zenith angles and interaction models.
- QGSJET, QGSJET II, EPOS, GHEISHA and EGS4 models are used for simulation of library showers
- Shower library is available at http://livni.inr.ac.ru/ you may register to use it at the workshop or on the website.

Method

- We assume a ground array to consist of 3 m^2 area AGASA-like plastic scintillators.
- Full shower simulation allows to calculate the values of observables directly
- For each library shower we calculate a value of the observable at the detector located at 425 m from core averaged over all possible detector positions.

Examples: shower front delay

G. Rubtsov, Timing-related observables

Timing-related observables for UHECR composition studies.

R - p.

Examples: rise time

G. Rubtsov, Timing-related observables

R

N

R_{p.8}

Examples: first signal

G. Rubtsov, Timing-related observables

Ν

 \mathbf{R}_{p}

Я

Conclusions

- Timing-related observables are important for composition studies of UHECR
- Complete simulations may be performed only for limited energy/statistics
- There is a variety of observables, one should find optimal ones for a particular experiment.