

4th International UHECR Workshop on the Highest Energy Cosmic Rays and their Sources

Study of the chemical composition with muon content

Dmitry Gorbunov

INR RAS, Moscow, Russia

21 May 2008 Moscow, Institute for Nuclear Research of RAS

Dmitry Gorbunov (INR, Moscow)

chemistry with muons

21.05.08, Moscow, INR 1 / 12

Outline

Dmitry Gorbunov (INR, Moscow)

chemistry with muons

21.05.08, Moscow, INR

2/12

э

< 注) < 注)

What is the primary of an observed event?

energy-related parameters of a shower composition-related parameters of a shower *E*-parameters *C*-parameters

Both parameters are reconstructed with some errors

The probability distribution that the primary particle which produced an actual shower with the observed E-parameters equal to E_{obs} would rather produce a shower with these parameters equal to E_{rec} : $g_E(E_{rec}, E_{obs})$

The probability distribution that a shower with measured C-parameters equal to \mathbf{c} could produce detector readings corresponding to \mathbf{c}' :

$$g_c(\mathbf{c}',\mathbf{c})$$
.

Dmitry Gorbunov (INR, Moscow)

chemistry with muons

B N A B N

Steps

- for each primary one generates a library of simulated showers : the same direction, $E_s \sim E_{obs}$, e.g. $0.5E_{obs} < E_s < 2E_{obs}$
- **2** following the experimental procedure for each event one finds E_{rec}
- \odot one assigns to each simulated shower a weight $w_1 = g_E(E_{obs}, E_{rec})$
- one assigns to each simulated shower an additional weight $w_2 = (E_s/E_{obs})^{\alpha}$ to mimic the real power-law spectrum

Output:

The distribution of the parameters \mathbf{c} for the showers consistent with the real one by E-parameters is given by

$$f_A(\mathbf{c}) = \frac{1}{\mathcal{N}} \sum_i g_c(\mathbf{c}, \mathbf{c}_{iA}) w_{1,iA} w_{2,iA}$$

Dmitry Gorbunov (INR, Moscow)

.

If the event is unlikely being initiated by the primary A, one can estimate of the probability it could be initiated by the primary A:

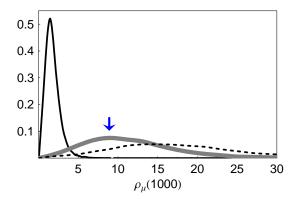
$$p_{A_1} = F_A(\mathbf{c}_{\mathrm{obs}}) \equiv \int\limits_{f_A(\mathbf{c}) \le f_A(\mathbf{c}_{\mathrm{obs}})} f_A(\mathbf{c}) d\mathbf{c}$$

one can test the hypothesis that the primary was either A_1 or $A_2.$ Then $p_{A_1}+p_{A_2}=1$ and

$$p_{A_{1,2}} = rac{f_{A_{1,2}}(\mathbf{c}_{\mathrm{obs}})}{f_{A_1}(\mathbf{c}_{\mathrm{obs}}) + f_{A_2}(\mathbf{c}_{\mathrm{obs}})}$$

Dmitry Gorbunov (INR, Moscow)

chemistry with muons


21.05.08, Moscow, INR

5/12

(3) + (3) + (3)
(4)
(4) + (4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)

The highest energy $\rm AGASA~$ event $\rm 2.46\cdot10^{20}~eV$

Distributions of muon densities f_A of simulated events: thin dark line, $A = \gamma$; thick gray line, A = p; dashed line, A = Fe.

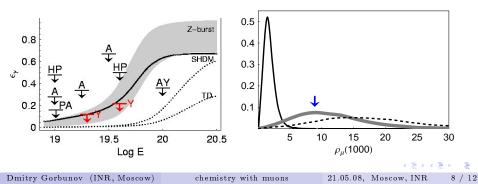
Ground array: Yakutsk

10-20 km²

Dmitry Gorbunov (INR, Moscow)

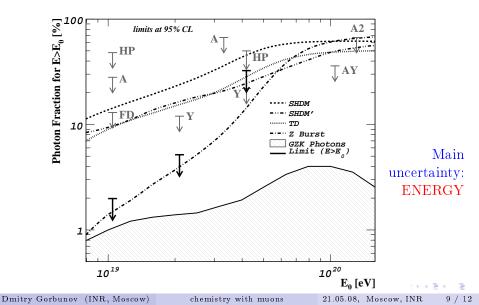
chemistry with muons

21.05.08, Moscow, INR


7 / 12

Chemical composition: results

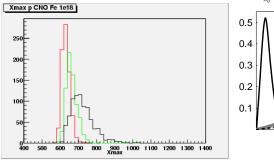
- no horizontal showers no neutrinos!
- no muon-pour showers no photons!
- most probably protons or nuclei
- lack of muons in simulated showers

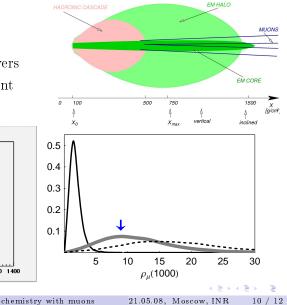


Photons

Limits on photons: PAO and Yakutsk

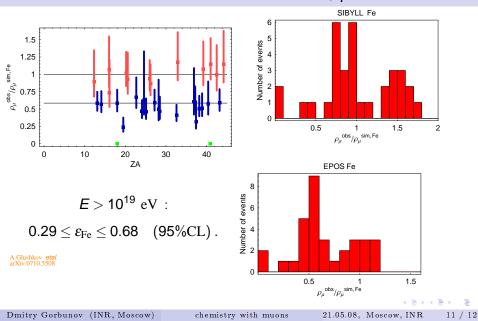
Photons


Chemical composition: methods

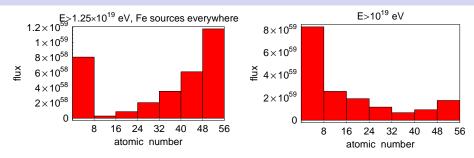

• muon component

Dmitry Gorbunov (INR, Moscow)

- X_{max}
- inclined, horizontal showers
- structure of a shower front



Nuclei


Chemical composition: measurement of ρ_{μ}

Nuclei

亂

Heavy irons: Yakutsk

Energy normalization to... HiRes

galactic-CR-like composition in the sources BUT NO p and He Scan over parameter space: $E_{max} \propto Z, z_{min}, \alpha, B_{extr}, IR$ accepted sets: consistent @ 5% or better other nuclei: $p_{\mu}(A) = p_{\mu}(p) \cdot A^{\beta}$ D.G., O.Kalashev, G.Rubtsov, S.Troitsky in preparation