High Energy Radiation from Centaurus A

Sergey Ostapchenko, Michael Kachelrieß, Ricard Thomas

NTNU, Trondheim

M. Kachelrieß, SO, R. Tomàs astro-ph/0805.2608

. High Energy Radiation from Centaurus A

Sergey Ostapchenko, Michael Kachelrieß, Ricard Thomas

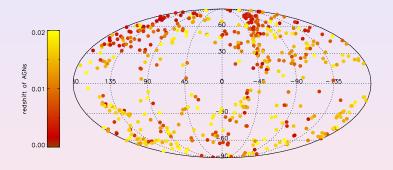
NTNU, Trondheim

MK, S. Ostapchenko, R. Tomàs astro-ph/0805.2608

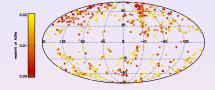
Outline of the talk

- Auger correlation claim
- Test by multi-messenger approach?
 - Cen A source & acceleration models
 - Our simulation
 - Results
- Summary and outlook

Outline of the talk

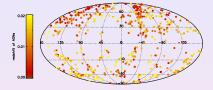

- Auger correlation claim
- Test by multi-messenger approach?
 - Cen A source & acceleration models
 - Our simulation
 - Results
- Summary and outlook

Outline of the talk

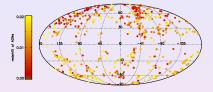

- Auger correlation claim
- Test by multi-messenger approach?
 - Cen A source & acceleration models
 - Our simulation
 - Results
- 3 Summary and outlook

ullet VC catalogue: 694 AGNs within $d=100\,\mathrm{Mpc}$

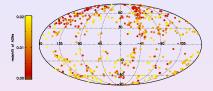
ullet VC catalogue: 694 AGNs within $d=100\,\mathrm{Mpc}$



ullet VC catalogue: 694 AGNs within $d=100\,\mathrm{Mpc}$

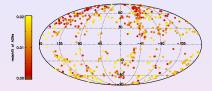

• 81 CR events with $E > 40 \,\mathrm{EeV}$ and $\vartheta \le 60^\circ$

ullet VC catalogue: 694 AGNs within $d=100\,\mathrm{Mpc}$

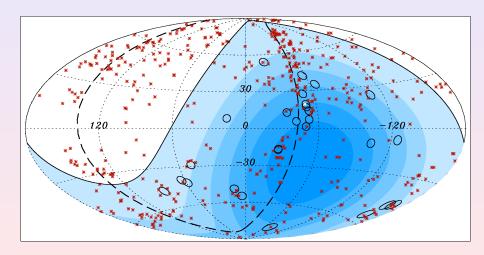

- 81 CR events with $E > 40 \, \text{EeV}$ and $\vartheta \leq 60^\circ$
- first data set with data < May 2006 to fix cuts: $E_{\rm th} = 56 {\rm EeV}, \; \ell_0 = 3.1^\circ \; {\rm and} \; d \leq 75 \, {\rm Mpc}.$

• VC catalogue: 694 AGNs within $d = 100 \,\mathrm{Mpc}$

- 81 CR events with $E > 40\,\mathrm{EeV}$ and $\vartheta \leq 60^\circ$
- first data set with data < May 2006 to fix cuts: $E_{\rm th}=56{\rm EeV},~\ell_0=3.1^\circ$ and $d\le75\,{\rm Mpc}.$
- second data set May 2006–August 2007: 13 events, 8 correlated, 2.7 expected $\Rightarrow p_{\rm ch} \approx 2 \times 10^{-3}$


• VC catalogue: 694 AGNs within $d = 100 \,\mathrm{Mpc}$

- 81 CR events with $E > 40 \, \text{EeV}$ and $\vartheta \le 60^\circ$
- first data set with data < May 2006 to fix cuts: $E_{\rm th}=56{\rm EeV},~\ell_0=3.1^\circ$ and $d\le75\,{\rm Mpc}.$
- second data set May 2006–August 2007: 13 events, 8 correlated, 2.7 expected $\Rightarrow p_{\rm ch} \approx 2 \times 10^{-3}$
- just a "3 σ effect"


• VC catalogue: 694 AGNs within $d = 100 \,\mathrm{Mpc}$

- 81 CR events with $E > 40 \, \text{EeV}$ and $\vartheta \leq 60^\circ$
- first data set with data < May 2006 to fix cuts: $E_{\rm th}=56{\rm EeV},~\ell_0=3.1^\circ$ and $d\le75\,{\rm Mpc}.$
- second data set May 2006–August 2007: 13 events, 8 correlated, 2.7 expected $\Rightarrow p_{\rm ch} \approx 2 \times 10^{-3}$
- just a "3 σ effect"
- AGN or something with similar distribution?

• 27 CRs (⊙) and 472 AGN (*):

ullet at present blind analysis: "3 σ deviation from isotropy"

- \bullet at present blind analysis: "3 σ deviation from isotropy"
- ullet angular scale ℓ consistent with expected deflections?

- ullet at present blind analysis: "3 σ deviation from isotropy"
- angular scale ℓ consistent with expected deflections?
- confusion danger with other sources in supergalactic plane $(\ell \approx 3^{\circ})$

- ullet at present blind analysis: "3 σ deviation from isotropy"
- ullet angular scale ℓ consistent with expected deflections?
- confusion danger with other sources in supergalactic plane $(\ell \approx 3^\circ)$
- large fraction of all AGN required to accelerate to $E > 10^{20} \text{eV}$

- ullet at present blind analysis: "3 σ deviation from isotropy"
- ullet angular scale ℓ consistent with expected deflections?
- confusion danger with other sources in supergalactic plane $(\ell \approx 3^\circ)$
- large fraction of all AGN required to accelerate to $E>10^{20}{\rm eV}$
- internal inconsistencies: energy and chemical composition

- ullet at present blind analysis: "3 σ deviation from isotropy"
- ullet angular scale ℓ consistent with expected deflections?
- confusion danger with other sources in supergalactic plane $(\ell \approx 3^\circ)$
- large fraction of all AGN required to accelerate to $E > 10^{20} eV$
- internal inconsistencies:
 - energy scale
 - chemical composition
- independent/additional evidence?

Possible source/acceleration scenarios

- mechanism: shock acceleration vs. acceleration in regular fields
- location: core, hot spots, along the jet
- target: gas vs. photons

Possible source/acceleration scenarios

- mechanism: shock acceleration vs. acceleration in regular fields
- location: core, hot spots, along the jet
- target: gas vs. photons

Possible source/acceleration scenarios

- mechanism: shock acceleration vs. acceleration in regular fields
- location: core, hot spots, along the jet
- target: gas vs. photons

- observations:
 - $d = 3.8 \,\mathrm{kpc}$
 - $M = (0.5 2) \times 10^8 M_{\odot}$
 - $\dot{M} = \dot{6} \times 10^{-4} M_{\odot}$
 - $L_X = 5 \times 10^{41} \text{erg/s}$
- \Rightarrow efficiency $\eta = 5\%$
 - supports standard thin, optical thick accretion disc with

$$T(r) = \left(\frac{3GM\dot{M}}{8\sigma\pi r^3} \left[1 - (R_0/r)^{1/2}\right]\right)^{1/4}$$

- add X-ray from hot corona
- simplify to 1-dim geometry

- observations:
 - $d = 3.8 \,\mathrm{kpc}$
 - $M = (0.5 2) \times 10^8 M_{\odot}$
 - $\dot{M} = 6 \times 10^{-4} M_{\odot}$
 - $L_X = 5 \times 10^{41} \text{erg/s}$
- \Rightarrow efficiency $\eta = 5\%$
 - supports standard thin, optical thick accretion disc with

$$T(r) = \left(\frac{3GM\dot{M}}{8\sigma\pi r^3}\left[1 - (R_0/r)^{1/2}\right]\right)^{1/4}$$

- add X-ray from hot corona
- simplify to 1-dim geometry

- observations:
 - $d = 3.8 \,\mathrm{kpc}$
 - $M = (0.5 2) \times 10^8 M_{\odot}$
 - $\dot{M} = 6 \times 10^{-4} M_{\odot}$
 - $L_X = 5 \times 10^{41} \text{erg/s}$
- \Rightarrow efficiency $\eta = 5\%$
 - supports standard thin, optical thick accretion disc with

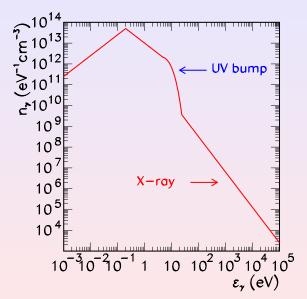
$$T(r) = \left(\frac{3GM\dot{M}}{8\sigma\pi r^3} \left[1 - (R_0/r)^{1/2}\right]\right)^{1/4}$$

- add X-ray from hot corona
- simplify to 1-dim geometry

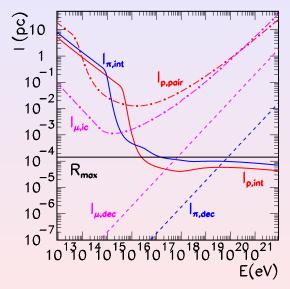
- observations:
 - $d = 3.8 \,\mathrm{kpc}$
 - $M = (0.5 2) \times 10^8 M_{\odot}$
 - $\dot{M} = \dot{6} \times 10^{-4} M_{\odot}$
 - $L_X = 5 \times 10^{41} \text{erg/s}$
- \Rightarrow efficiency $\eta = 5\%$
 - supports standard thin, optical thick accretion disc with

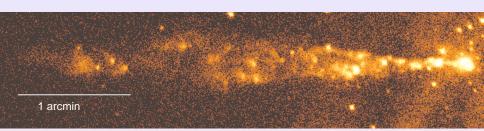
$$T(r) = \left(\frac{3GM\dot{M}}{8\sigma\pi r^3} \left[1 - (R_0/r)^{1/2}\right]\right)^{1/4}$$

- add X-ray from hot corona
- simplify to 1-dim geometry

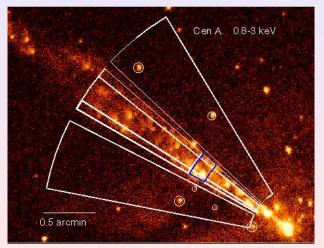

- observations:
 - $d = 3.8 \, \text{kpc}$
 - $M = (0.5 2) \times 10^8 M_{\odot}$
 - $\dot{M} = \dot{6} \times 10^{-4} M_{\odot}$
 - $L_X = 5 \times 10^{41} \text{erg/s}$
- \Rightarrow efficiency $\eta = 5\%$
 - supports standard thin, optical thick accretion disc with

$$T(r) = \left(\frac{3GM\dot{M}}{8\sigma\pi r^3} \left[1 - (R_0/r)^{1/2}\right]\right)^{1/4}$$

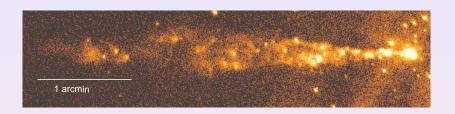

- add X-ray from hot corona
- simplify to 1-dim geometry


UV and X-ray background from the accretion disk

Lenght scales for acceleration close to the core

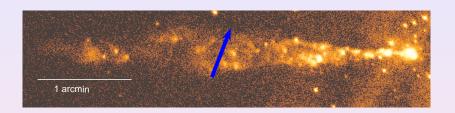


Chandra observation of X-ray emission in the jet

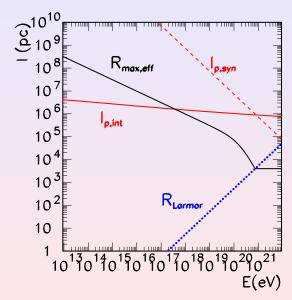


Chandra observation of X-ray emission in the jet

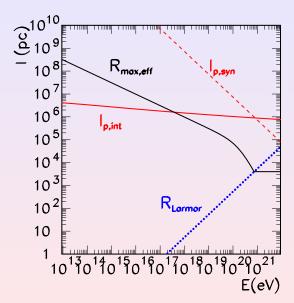
- divide in subareas
- ullet separate fit to gas colum density X and spectral index lpha



Chandra observation of X-ray emission in the jet: Results

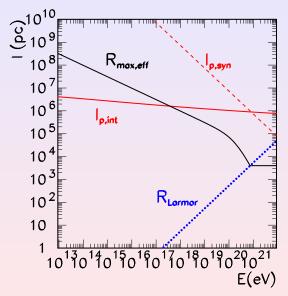

• $X = 1.5 \times 10^{21} / \text{cm}^2$ in the jet

Chandra observation of X-ray emission in the jet: Results



- $\bullet \ X = 1.5 \times 10^{21}/\mathrm{cm}^2 \ \mathrm{in \ the \ jet}$
- with d = 0.4 kpc and $\sigma_{pp} = 150$ mbarn:
- \Rightarrow interaction depth $au_{pp} \sim 0.01$

Lenght scales for acceleration in the jet



Lenght scales for acceleration in the jet

 diffusion increases effective size

Lenght scales for acceleration in the jet

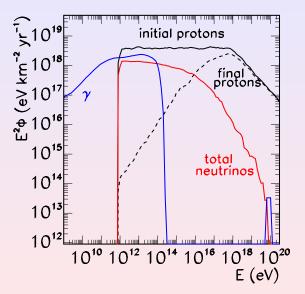
- diffusion increases effective size
- for pp no threshold
- $\tau = 1$ for $E = 10^{17} \text{eV}$, optimal for neutrino telescope

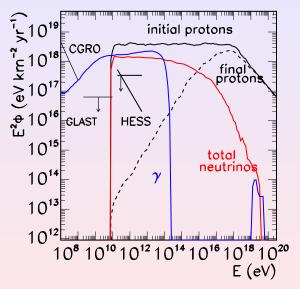
Our two base models

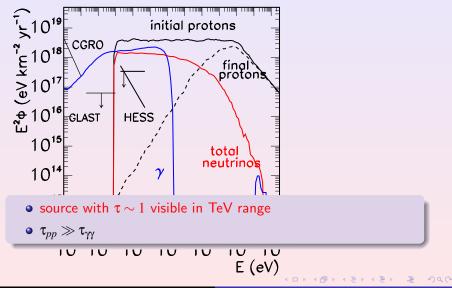
acceleration close to the core

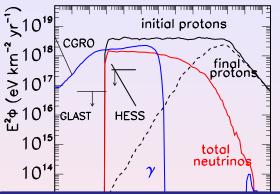
acceleration in accretion shock/regular fields

 $p\gamma$ interactions

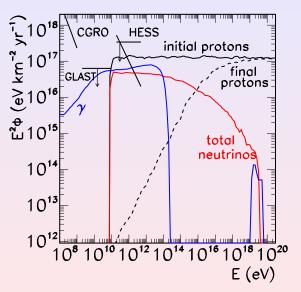

 $au_{\gamma\gamma}\gg 1$, synchrotron losses for e^\pm

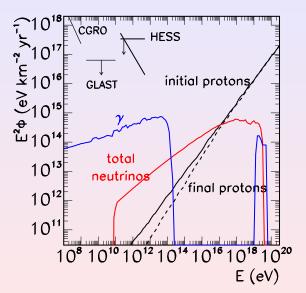

acceleration in jet


shock acceleration

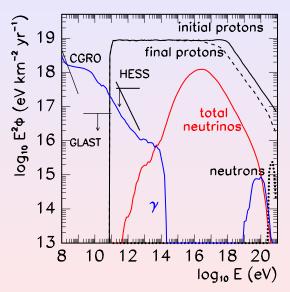

pp interactions

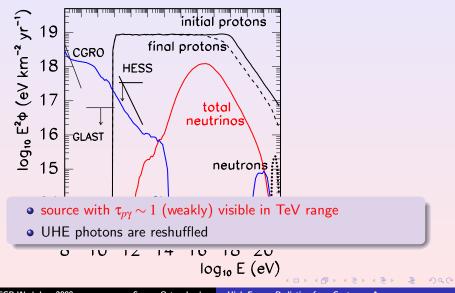
 $au_{\gamma\gamma} \ll 1$, synchrotron losses for e^\pm

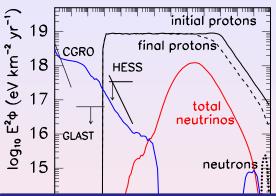



$\alpha = 2.7$ required for diffuse CR flux in "dip model"

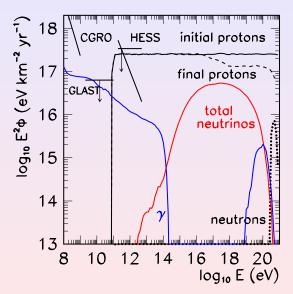
- disfavoured as spectrum of single source Cen A
- \Rightarrow diffuse spectrum = superposition of single sources with $dn/dE_{\rm max}$ distribution
 - HE γ observations constrain UHECR models

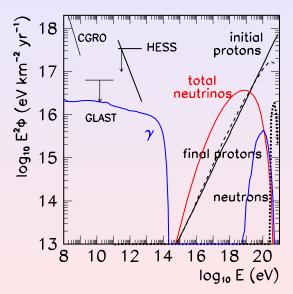

Results for acceleration in jet: $\alpha = 2$


Results for acceleration in jet: $\alpha = 1.2$


Results for acceleration close to the core: broken power-law

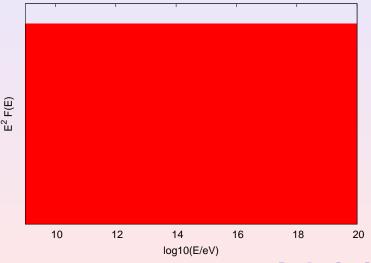
Results for acceleration close to the core: broken power-law


Results for acceleration close to the core: broken power-law

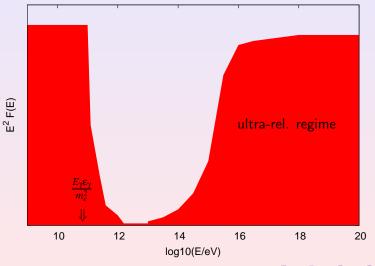

$\alpha = 2.7$ required for diffuse CR flux in "dip model"

- excluded as spectrum of single source Cen A
- \Rightarrow diffuse spectrum = superposition of single sources with $dn/dE_{\rm max}$ distribution
 - HE γ observations constrain UHECR models

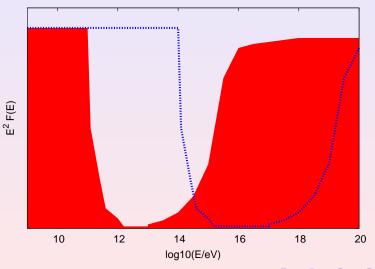
Results for acceleration close to the core: $\alpha = 2$



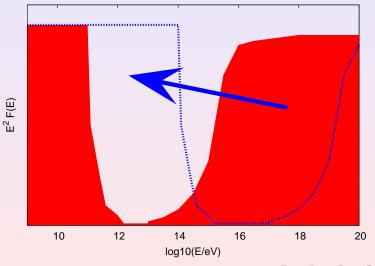
Results for acceleration close to the core: $\alpha = 1.2$


Regenerating TeV photons: a) in the source

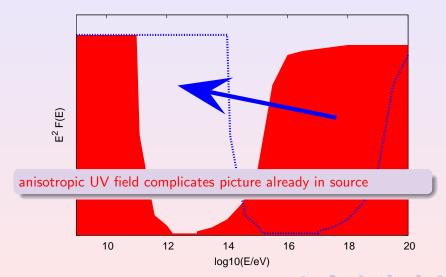
• injections spectrum $F_{\gamma}(E) \propto 1/E^2$


Regenerating TeV photons: a) in the source

 \bullet : thin above $10^{16} \mathrm{eV}$, ultra-rel. regime


Regenerating TeV photons: b) on CMB

• photons above 10¹⁶eV cascade on CMB


Regenerating TeV photons: b) on CMB

ullet photons above $10^{16} {
m eV}$ cascade on CMB : fill up TeV range

Regenerating TeV photons: b) on CMB

 \bullet photons above $10^{16} \mathrm{eV}$ cascade on CMB : fill up TeV range

- fixed n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis

- fixed n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis
- HE neutrino astronomy:
 - exploiting directional signal (=muons) requires northern experiment
 - event number most sensitive on steepness of CR spectrum: 10^{-4} -few events per year

- fixed n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis
- HE neutrino astronomy:
 - exploiting directional signal (=muons) requires northern experiment
 - event number most sensitive on steepness of CR spectrum: 10^{-4} -few events per year
- HE gamma astronomy:
 - all cases promising apart from $\alpha \to 1$

- fixed n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis
- HE neutrino astronomy:
 - exploiting directional signal (=muons) requires northern experiment
 - event number most sensitive on steepness of CR spectrum: 10^{-4} -few events per year
- HE gamma astronomy:
 - all cases promising apart from $\alpha \to 1$
- general: TeV photon sources may be also good neutrino sources

