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Abstract

The problem of constructing internally rotating solitons of fixed angular frequency ω in
the models of Skyrme family models is reformulated as a variational problem for an energy-
like functional, called pseudoenergy, which depends parametrically on the angular frequency
ω. Different types of instabilities of the isospinning solitons are investigated.

1 Introduction

Many field theories of interest in fundamental physics support topological solitons – spatially
localized, stable lumps of energy whose strongly particle-like characteristics make them nat-
ural theoretical models of elementary particles. Perhaps the best developed model from this
viewpoint is the Skyrme model, whose solitons are posited to model atomic nuclei. It is of funda-
mental importance in this context that individual solitons possess both rotational and internal
rotational (or isorotational) degrees of freedom. In the Skyrme model, the rotational degrees
of freedom account, after quantization, for the spin of atomic nuclei, while the isorotational
degrees of freedom account, roughly speaking, for their difference in “flavour”.

The so-called baby Skyrme model is a modified version of the non-linear O(3) σ-model
in 2 + 1 dimensions [1], a low-dimensional simplified theory which resembles the conventional
Skyrme model in many important respects. This model has a number of applications, e.g. in
condensed matter physics where Skyrmion configurations were observed experimentally [2], or
in the topological quantum Hall effect [3].

Together with the original Skyrme model in d = 3 + 1 [4] and the Faddeev–Skyrme model
[5], the baby Skyrme model can be considered as a member of the Skyrme family. Indeed, the
Lagrangian of all these models has similar structure, it includes the usual O(3) sigma model
kinetic term, the Skyrme term, which is quartic in derivatives, and the potential term which
does not contain the derivatives.

A peculiar feature of the models from the Skyrme family is that the corresponding soliton
solutions, Skyrmions and Hopfions, do not saturate the topological bound. In order to attain
the topological lower bound and get a linear relation between the masses of the solitons and
their topological charges, one has to modify the model, for example drop out the quadratic
kinetic term [14, 28] or extend the model by coupling of the Skyrmions to an infinite tower
of vector mesons [29]. Thus, the powerful methods of differential geometry cannot be directly
applied to describe low-energy dynamics of the Skyrmions and hopfions, one has to analyse the
processes of their scattering, radiation and annihilation numerically [30, 13].

Typically, the problem of direct simulation of the soliton dynamics is related with sophis-
ticated numerical methods, the calculations require considerable amount of computational re-
sources, actually this problem is fully investigated only for the low-dimensional baby Skyrme
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model. Even more simple task of full numerical investigation of the spinning solitons beyond
rigid body approximation was performed only recently in the FaddeevSkyrme model [16, 18]
and in the baby Skyrme model [26, 20], in the case of the original Skyrme model in d = 3 + 1
this problem is not investigated yet.

Note that the solitons of the models of the Skyrme family possess both rotational and
internal rotational (or isorotational) degrees of freedom. Traditional approach to study the
spinning solitons is related with rigid body approximation, both in the context of the Skyrme
model [11, 12] and in the baby Skyrme model [13]. The assumption is that the solitons could
rotate without changing its shape. It has long been recognized that this is not a very satisfactory
approximation, and various attempts have been made to improve on it. This restriction can
be weakly relaxed by consideration of the radial deformations which would not violated the
rotational symmetry of the hedgehog configuration [13, 15]. Evidently, this approximation is not
very satisfactory, a consistent approach is to solve full system of field equation without imposing
any spatial symmetries on the isospinning solitons. Furthermore, almost all previous studies
of spinning solitons (see e.g. [16, 17]) were concerned with minimization of the total energy
functional EJ [φφφ] for fixed value of the isospin J . However if we do not assume the spinning
soliton will have precisely the same shape as the static soliton, this approach becomes rather
involved, it is related with numerical solution of complicated differential-integral equation.

Very recently the isospinning soliton solutions were considered in the FaddeevSkyrme model
beyond rigid body approximation [16, 18]. The approach of the paper [18] is to consider the
static pseudo-energy minimization problem, where the pseudo-energy functional Fω[φφφ] depends
parametrically on the angular frequency ω. The important conclusion which is general for all
models of the Skyrme family, is that there is a new type of instability of the solitons due to the
extra nonlinear velocity dependence generated by the Skyrme term [18].

In this paper, we review our analysis of the critical behavior of the isospinning solitons
of the Skyrme family. We confirm existence of two types of instabilities determined by the
relation between the mass parameter of the potential µ and the frequency ω, both in the planar
baby-Skyrme model [20] and in the Faddeev–Skyrme model [16, 18]. Interestingly, we observe
that the critical behavior of the isospinning baby Skyrmions depends also on the structure
of the potential of the model, for example in the case of the ”old” model [1] the isospinning
configurations of higher degree may become unstable with respect to decay into constituents.

2 Baby Skyrme model

As a starting point we consider the rescaled Lagrangian of the O(3) σ-model with the Skyrme
term in 2 + 1 dimensions [1]

L = ∂µφφφ · ∂µφφφ− 1

4
(∂µφφφ× ∂νφφφ)

2 − U [φφφ] (1)

where φφφ = (φ1, φ2, φ3) denotes a triplet of scalar fields which satisfy the constraint |φφφ|2 = 1.
Topologically the field is the map φ : R2 → S2 characterized by the topological charge B =
π2(S

2) = Z. Explicitly, B = 1
4π

∫
φφφ · ∂1φφφ× ∂2φφφ d

2x.
Note that the first two terms in the functional (1) are invariant under the global O(3)

transformations, this symmetry becomes broken via the potential term. The standard choice of
the potential of the baby Skyrme model is [1] U [φφφ] = µ2[1 − φ3] , thus the symmetry is broken
to SO(2) and there is a unique vacuum φφφ

∞
= (0, 0, 1). The corresponding solitons of degree

B = 1, 2 are axially symmetric [1] however the rotational symmetry of the configurations of
higher degree becomes broken [13].

The residual symmetry of the configurations with respect to the rotations around the third
axis in the internal space allows us to consider the stationary isospinning (i.e. internally rotat-
ing) solitons (φ1+ iφ2) 7→ (φ1+ iφ2)e

iωt, , where ω is the angular frequency. The corresponding
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conserved quantity is the angular momentum J = ωΛ[φφφ], where Λ[φφφ] is the moment of inertia,

thus the total energy of the spinning field configuration is EJ [φφφ] = V [φφφ] + J2

2Λ[φφφ] .
Evidently, the isorotations of the energy functional of the baby Skyrme model yield the

pseudo-energy functional

Fω[φφφ] = V − 1

2
ω2Λ(φφφ) (2)

where the V is the potential energy of the non-rotated configuration and the moment of inertia

is Λ(φφφ) =
∫
R2

{
(φφφ

∞
×φφφ)2[1+(∂iφφφ ·∂iφφφ)]− [φφφ

∞
· (φφφ×∂iφφφ)]2

}
. The isospinning solitons correspond

to the stationary points of the functional (2). However the pseudoenergy is not bounded from
below for ω > ω1 =

√
2 independently from the particular choice of the potential U [φφφ] [18].

Indeed, the first term in (2) effectively defines the geometry of the deformed sphere S2 squashed
along the direction φφφ

∞
, the metric on this space becomes singular at ω = ω1 =

√
2.

The second critical frequency is related with condition of positiveness of the effective poten-
tial Uω[φφφ] = U [φφφ]− ω2(1 − φ23), it approaches zero at some critical value ω = ω2. In this limit
the isospinning solitons of the baby Skyrme model cease to exist because the vanishing of the
potential makes the configuration unstable.

The traditional approach to study the solitons of the model (1) is related with separation
of the radial and angular variables [1, 13], thus the consideration becomes restricted to the
case of rotationally invariant configurations and the corresponding Euler-Lagrange equations
are reduced to a single ordinary differential equation on radial function f(ρ). However more
detailed analyse reveal that the higher charge B ≥ 3 baby Skyrmions may not possess rotational
symmetry [1, 25], starting from some critical value of the mass parameter µ the global minimum
of the energy functional corresponds to the configurations with discrete symmetries.

The violation of the rotation invariance in the baby Skyrme model attracted a lot of attention
recently, it was demonstrated that the effect strongly depends on the particular choice of the
potential of the model [8, 9, 10]. Thus, considering the isorotating baby Skyrmions we will
consider complete system of coupled partial differential equations on the triplet of functions
φφφ(ρ, θ) which follows from the Lagrangian (1).

3 Numerical results

Here we consider evolution of the baby Skyrmions in the model with ”old” potential. When
the mass parameter is restricted from above as µ2 < 2, we observe critical behavior of the first
type, the effective potential vanishes and both the energy and the angular momentum diverge.
When µ2 increases further, second type of critical behavior is observed, our algorithm ceases
to find any critical points when ω is taking the values ω >

√
2 thought the energy and the

angular momentum remain finite. Note that the plots of the energy of the baby Skyrmions as
function of isospin look similar with the dependencies E(J) in the Faddeev–Skyrme model [18],
up to some value of J the energy remains almost constant, i.e. the configuration spins as a rigid
rotator, then the curve E(J) becomes linear up to critical value at which the solution breaks
up.

Interestingly, for the rotationally invariant configurations which we can construct using the
hedgehog ansatz [1] and considering relatively large values of the mass parameter µ, we observe
crossing in both Fω(ω) and E(ω) curves. Indeed, our numerical simulations confirm that for
some (third) critical value of frequency ω3 the pseudo-energy of the axially symmetric B ≥ 2
multi-Skyrmion becomes higher than the pseudo-energy of the system of B charge one baby
Skyrmions, so the configurations are unstable with respect to decay into constituents as shown
in Fig. 1. Typically, increasing the value of the mass parameter µ will increase the stability of
the rotationally invariant multisolitons, the critical values of the frequencies which correspond
to the crossing between the Fω(ω) curves then increase.
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Figure 1: (Color online) Critical behavior of the rotationally invariant soliton solutions of the model
with ”old” potential. The contour plots of the energy density of the rotationally invariant (upper row)
baby Skyrmions with charges B = 2, 3, 4, 5 and µ2 = 8 at ω = 0.8 and their decay into B charge one
solitons (2nd and 3rd rows).

4 Faddeev-Skyrme model

Now we consider the internally rotating soliton solutions in the FaddeevSkyrme model [5]. Such
solitons are conventionally called hopfions, since they are classified topologically by their Hopf
degree (an integer-valued topological invariant). Explicitly, our field is a triplet φφφ = (φ1, φ2, φ3)
constrained to the unit sphere S2 in 3 + 1 dimensions. For finite energy solutions the field
φφφ must tend to a constant value at spatial infinity, which we select to be φφφ0 = (0, 0, 1). This
allows a one-point compactification R

3 ∼ S3, thus topologically the field is the map φφφ : R3 → S2

characterized by the Hopf invariant Q = π3(S
2) = Z. The energy of the Faddeev-Skyrme model

is bound from below by the Vakulenko-Kapitansky inequality [35] E ≥ const|Q| 34 .
The FaddeevSkyrme model has the same Lagrangian density (1) as the baby Skyrme model,

the potential term now is necessary to stabilize the isospinning solitons. Peculiar feature of
the model is that it has a rather rich spectrum of static soliton solutions, which should be
understood as (possibly linked or self-knotted) string-like objects, but has only one internal
rotational degree of freedom, because the potential breaks the internal rotational symmetry
group to SO(2).

For the lowest two values of the Hopf charge Q = 1, 2 the hopfion solutions are axially-
symmetric [33]. A configuration of this type is labeled as An,m, it has topological charge
Q = nm, where n,m ∈ Z. Here the first subscript labels the number of twists along the loop
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and the second is the usual O(3) sigma model winding number associated with the map S2 → S2

Here, and in the sequel, we are using the notation introduced by Sutcliffe to label Hopf soliton
shapes [34].

Briefly, QAn,m denotes an axially symmetric hopfion of charge Q, where the position curve
(preimage of −ψ∞) is a circle, and the preimage of a regular value close to −ψ∞ is a disjoint
union of m closed curves, each winding n times around the circle. In fact Q = nm, so including
Q in the label is redundant, but convenient. A soliton of type QÃn,m has the same qualitative
form, but with axial symmetry weakly broken, so the position curve is not exactly circular.
Later we will encounter solitons whose position curves are links of two components. These will
be denoted QLa,bp,q where the subscripts denote the Hopf charges of each component, and the
superscripts denote the extra Hopf degree of each component due to its linking with the other
component. We will also encounter hopfions whose position curves are torus knots of type (a, b)
(where a and b denote the windings of the curve around the S1 factors in T 2). We denote these
QKa,b.

The charge Q = 1 A1,1 configuration possesses the maximum of the energy density at the
origin, the energy density isosurfaces are squashed spheres as seen in Fig.??. The charge Q = 2
A2,1 solutions have toroidal structure( see Fig.??). Inclusion of the mass term increases the
attraction in the system, the total energy of the massive hopfion increases monotonically as
mass parameter µ increases [28].

However as the Hopf charge Q increases, the landscape of local energy minima becomes much
more complicated, there are a number of local energy minima of various types and geometries
which are slightly different in energy (cf ??). Furthermore, the number of local minima increases
with the charge.

Hence one can ask unambiguously “what is the degree Q isospinning hopfion of given angular
frequency ω ∈ R ?” It is interesting to discover how the energy of such solitons varies as their
angular frequency (or their conserved isospin) changes. We will find several examples where
these energy curves cross, so that the most energetically favourable shape of the hopfion for a
given degree Q changes when one isospins them fast enough [18].

Since isorotation involves only rotational symmetry of the target space S2, it is convenient
to consider the Faddeev-Skyrme model on a general oriented Riemannian manifold M . This
allows one to treat in unified fashion the case of principal interest, M = R

3, and the cases of
soliton chains or strings, M = R

2×S1, sheets M = R×T 2, or geometrically nontrivial domains
(of potential interest for cosmological applications, for example).

Given a time-dependent field φ : R ×M → S2, we have at each fixed time t a mapping
φ(t, ·) : M → S2 which we shall, in a slight abuse of notation, again denote φ, and a time
derivative φ̇, which is a section of the bundle φ−1TS2 over M . Using these, we define, at time
t, the kinetic and potential energy functionals to be

T =

∫

M

1

2
|φ̇|2 + 1

2
|φ∗(ιφ̇Ω)|2, V =

∫

M

1

2
|dφ|2 + 1

2
|φ∗Ω|2 + U(φ), (3)

where Ω is the area form on S2, φ∗Ω its pullback to M , ι denotes interior product, and U :
S2 → [0,∞) is a smooth potential function which we assume attains its minimum value 0 at
some point ψ∞ ∈ S2, and is invariant under rotations about ψ∞.

Let ω > 0 be a fixed constant. We seek time-periodic solutions of period 2π/ω. By definition,
these are critical points φ : S1

ω ×M → S2 of the action functional S(φ) =
∫
S1
ω

(T − V ), where

S1
ω = R/(2π/ω)Z is the circle of length 2π/ω. Denote by Xω the completion in C1 of the set of

smooth maps φ : S1
ω×M → S2 of finite action. We define an action of the group S1 = R/2πZ on

Xω as follows: ([α], φ) 7→ φ[α], φ[α](t, x) = R(α)φ(t−α/ω, x), where R(α) denotes the SO(3)
matrix generating rotation through angle α about the axis ψ∞. Clearly, S(φ[α]) = S(φ) for all
([α], φ), since the action is separately invariant under both time translation and isorotation
about ψ∞. Denote by XS1

ω the set of fixed points of this action. Then φ ∈ XS1

ω if and only
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if φ(t, x) = R(ωt)ψ(x) for some map ψ : M → S2. We may think of ψ as the stationary field
φ when viewed in an internally corotating frame. Since S1 is compact, it follows from the
Principle of Symmetric Criticality [32] that φ ∈ XS1

ω is a critical point of S : Xω → R if and
only if it is a critical point of the restricted action S : XS1

ω → R. Now

S(R(ωt)ψ(x)) =
2π

ω

{
1

2
ω2

∫

M

(|ψ∞ × ψ|2 + |d(ψ∞ · ψ)|2)− V (ψ)

}
,

so a uniformly isorotating field is a critical point of S if and only if the static field ψ :M → S2

is a critical point of the functional

Fω(ψ) =

∫

M

{
1

2
(|dψ|2 − ω2|d(ψ∞ · ψ)|2) + 1

2
|ψ∗Ω|2 + (U(ψ) − 1

2
ω2|ψ∞ × ψ|2)

}
. (4)

This pseudoenergy functional is counterpart of the (2) in the planar baby Skyrme model.
The first two terms of (4), taken together, can be interpreted as the Dirichlet energy of the

map ψ :M → S2, where S2 is given the deformed metric 〈X,Y 〉ω = X ·Y −ω2(ψ∞·X)(ψ∞·Y ) for
all X,Y ∈ TψS

2. For 0 < ω < 1 this metric gives S2 the geometry of an oblate sphere, squashed
along the direction of ψ∞. For ω > 1, the metric is singular, changing from Riemannian to
Lorentzian in a strip around the equator (orthogonal to ψ∞). Consequently, the pseudoenergy
Fω is no longer bounded below for ω > ω1 = 1 which, as we will see, has strong phenomenological
consequences.

The third term of Fω is just the usual Faddeev-Skyrme term (quartic in spatial derivatives).
The fourth and fifth terms together can be interpreted as a deformed potential Uω(ψ) = U(ψ)−
1
2ω

2|ψ∞ × ψ|2. Hence, if ω > ω2 = µ, Fω is again unbounded below. A particularly convenient
choice for U is U(ψ) = 1

2µ
2(1− ψ2

3)
2. Then ψ∞ = (0, 0, 1) and the deformed potential is

Uω(ψ) =
1

2
(µ2 − ω2)(1− ψ2

3)
2.

This is the potential we use in all our numerical simulations.
Since the model is invariant under global rotations of φ about ψ∞, it has an associated

conserved Noether charge, called isospin J =
∫
M

{
φ̇ · (ψ∞ × φ) + 〈d(ψ∞ · φ), φ∗(ι

φ̇
Ω)〉

}
. For

uniformly isorotating fields of the form (4), this equals J = Λ(ψ)ω, where Λ(ψ) is the moment
of inertia. Hence Fω(ψ) = V (ψ) − 1

2ω
2Λ(ψ), while the total energy of the field (4) is V + T =

V (ψ) + J2/(2Λ(ψ)).
Similar to the case of the baby Skyrme model there are two natural variational problems

for ψ:

1. For fixed ω, extremize Fω(ψ) = V (ψ)− 1
2ω

2Λ(ψ);

2. For fixed J , extremize EJ(ψ) = V (ψ) + J2/(2Λ(ψ)).

It is clear that these two problems are precisely equivalent: if ψ solves 1, then it solves
2 with J = Λ(ψ)ω, and if ψ′ solves 2, it solves 1 with ω = J/Λ(ψ′). Previous studies [17]
of isorotating1 solitons have used formulation 2, however similar to case of the isospinning
solitons of the planar baby Skyrme model, we will mainly use formulation 1. This has several
advantages. First, it is directly clear, as we have shown (using the Principle of Symmetric
Criticality), that solutions of 1 correspond via (4) to genuine solutions of the field theory.
Second, the Euler-Lagrange equation corresponding to 1 is a PDE, similar in structure to the
static field equation of the Faddeev-Skyrme model, whereas the equation corresponding to 2
is a rather more complicated differential-integral equation. Consequently, it is a fairly simple

1Actually, [17] concerns spatially rotating Skyrmions, but within the axially symmetric ansatz used therein,
rotation is equivalent to isorotation.
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matter to adapt existing numerical techniques, developed for the static FS model, to deal with
problem 1. Third, formulation 1 makes it clear that, in the case µ > 1, there is no reason
why isospinning solitons should persist for frequencies ω ∈ (1, µ), since Fω is unbounded below
when ω > min{1, µ}. Hence, we have the possibility that isospinning hopfions are destabilized
by nonlinear velocity terms in the field equation before they reach the upper limit ω = µ.

4.1 Numerical results

In this section we briefly present the results of numerical simulations of the Faddeev-Skyrme
model [18]. Local minima of the pseudo-energy functional Fω(ψ) have been found for a range
of values of the Hopf degree Q and of ω. The majority of simulations were carried out with
µ = 2. This choice guarantees that ω1 < ω2, and thus allows us to investigate the possibility
that solitons become unstable to processes other than pion decay.

The numerical algorithm we employed is significantly different and it is much more complex
than the approach we used in the above considered case of the baby Skyrme model. To construct
the solitons of the Faddeev-Skyrme model one needs a serious amount of computational power
which, in our case was available on the computational cluster ARC1 (Leeds, UK).

When µ < 1 our simulations terminate at ω = µ, as expected. When µ > 1 our algorithm
ceases to find any critical points when ω = 1 . This is again consistent with our expectations, as
the pseudo-energy is not bounded from below when ω > 1. However, the existence of solutions
with ω > 1 is not ruled out, as they may continue to exist as saddle points of the pseudo-energy.
The borderline case µ = 1 is particularly interesting: the graphs of E(ω) grow rapidly as ω
approaches 1.

At degree 4 we have been able to find configurations of types 4A2,2, 4Ã4,1 and 4L1,1
1,1. The

4A2,2 is axially symmetric and may be thought of as two adjacent 2A2,1 solitons. The position
curve of the 4A2,2 in our model consists of two adjacent circles, whereas in the massless Faddeev-
Skyrme model it is a single circle.

Interestingly, we observe that the 4A2,2 configuration at ω = 0.58 undergoes a bifurcation.
We were also able to find a configuration which seems to be a saddle point of the pseudo-energy,
suggesting that the bifurcation is a pitchfork bifurcation.

When ω > 0.65 our algorithm is unable to find the 4A2,2 and instead converges to the 4L1,1
1,1.

Since the 4A2,2 configuration is axially symmetric it is likely to continue to exist as a critical
point of the pseudo-energy beyond ω = 0.65.

At degree five we found two distinct local minima of the pseudo-energy, namely a 5L1,2
1,1 link

and a 5Ã5,1 buckled ring. When ω = 0 the link has the lower energy. The two curves for E(ω)
cross when ω = 0.82 and thereafter the ring has the lower energy. In contrast, the E(J) curves
for these configurations do not cross and the link has the lower energy for any given value of J .

5Ã5,1 5L1,1
1,2 6L1,1

3,1 6L1,1
2,2

Figure 2: Solitons with Q = 5, 6 and µ = 2: position curves for the 5Ã5,1, 5L1,1
1,2, 6L

1,1
2,2 and 6L1,1

3,1

configurations, with light green and blue position curves corresponding to ω = 0 and ω = 1
respectively.

At degree six we again found two distinct local minima of the pseudo-energy. These were
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links of type 6L1,1
2,2 and 6L1,1

3,1, shown in figure 2. Unlike the study [28], we did not find a 6A3,2

configuration; this could be due to a different choice of potential function or a different choice
of the mass parameter µ. The 6L1,1

2,2 link has a lower energy than the 6L1,1
3,1 link for all values of

ω and for all values of J .
At degree seven the only minimum of the pseudo-energy found was a 7K3,2 knot.

7K3,2 8K3,2 8L1,1
3,3/8K3,2

Figure 3: Solitons with Q = 7, 8 and µ = 2. The top row shows position curves at ω = 0 (light
green) and ω = 1 (blue).

At degree eight the three energy minima found were a link of type 8L1,1
3,3 and a knot of type

8K3,2, see figure 3. We did not find a soliton corresponding to the 8A4,2 configuration in [28].

Within the limits of numerical accuracy the 8L1,1
3,3 and 8K3,2 configurations are degenerate in

energy when ω = 0. As ω increases the knot energy grows faster than that of the link, so that
the link has the lower energy. When ω reaches the value 0.38 the link collapses to the knot,
which has a smaller pseudo-energy. It is likely that when ω ≥ 0.38 the link is an unstable
critical point of the pseudo-energy, and that it continues to have a lower energy than the knot.

5 Conclusions

We have studied isospinning soliton solutions of the Skyrme family, the low-dimensional baby
Skyrme model and the 3+1 dimensional Faddeev-Skyrme model [18, 16, 20, 26]. Here we used
reformulation of the minimization problem considering the stationary points of the pseudoenergy
functional Fω(ω) which we found numerically without imposing any assumptions about the
spatial symmetries. Our results confirm that the solitons persist for all range of values of
ω ≤ min{

√
2, µ}, where µ is the mass of the scalar excitations, and their qualitative shape is

independent of the frequency ω. Thus, there are two types of instabilities of the solitons from
the Skyrme family, one is due to radiation of the scalar field and another one is related with
destabilization of the rotating solitons by nonlinear velocity terms.
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