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Abstract

The occupation number of a field is a sound discriminator between classical and quantum
regimes. In this pamphlet we give an overview of what we can learn about inflationary
magnetogenesis just by looking at the occupation numbers of the classical magnetic fields
observed today, and those of the quantum electromagnetic field during inflation. The sole
occupation number behaviour dictates that for a pure Maxwell theory in de Sitter space it
appears impossible to match the two epochs.
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Hang your collar up inside

Hang your dollar on me

Listen to the water still

Listen to the causeway

You are mad and educated

Primitive and wild

Welcome to the occupation

R.E.M., Welcome to the occupation

1 Welcome to the occupation

Scope. Our Universe is magnetised. Observations present substantial evidence of this fact
which holds true for a very wide range of lengthscales and structures, going from planets to
clusters of galaxies, and likely beyond. Compatibility with known features of the early Universe,
primarily the cosmic microwave background and big bang nucleosynthesis, and late Universe,
in the guise of rotation measures of distant objects, also bound several regions of the current
magnetic field spectrum. Excellent and detailed reviews on the subject report all essential
numbers as well as comprehensive surveys of the proposals for the generation of cosmic magnetic
fields, see for instance [1, 2, 3, 4, 5, 6].

The mystery is as of yet unsolved: the challenge is on. The aim of this brief work is to
clarify some aspects of magnetogenesis to provide insight on the very basic features a model
is demanded to possess. The focus here is on cosmological generation of magnetic seeds which
can later evolve dynamically in the structures and topologies we detect. The primary tool in
this analysis is the occupation number nk which determines the realm (quantum, classical) in
which computations should be performed.

The boundary between classical and quantum is a brumous and a befuddling one, see for
example [7] and references therein. The occupation number will reveal itself to be an extremely
useful and well-formed tool to set some necessary conditions on primordial magnetogenesis
models: it does us the service of a Land of Toys’ Talking Cricket. We walk through the
Big Bang following the Cricket’s adventures with the hope that restating known, perhaps not
universally accepted or acknowledged, results in a different perspective contributes to shrug off
some doubts found in recent literature [8, 9, 10, 11, 12, 13, 14] (originally: [15]), and form a
useful reference for future efforts in this field.

Definitions. The quantum Hamiltonian of a field ϕ and conjugate variable π, in momentum
k space, is

Hk ≡ H0
k + HI

k = πkπ−k + ϕkϕ−k + HI
k , (1)

where the interaction term HI
k

contains all interactions of the (π, ϕ) pair, including those
with other fields. This Hamiltonian can be used to describe cosmological perturbations during
inflation, as well as the two physical polarisations of the massless electromagnetic field. The
canonical creation and annihilation operators are defined by

ϕk ≡ 1√
2

(

ak + a†
k

)

, (2)

πk ≡ −i

√

k

2

(

ak − a†
k

)

, (3)

in terms of which we rewrite

H0
k = k

(

a†
k
ak + a†−k

a−k + 1
)

≡ k (Nk + 1) . (4)
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The occupation number operator tells how many particles fill a given state |Ψ〉. The expectation
value of the number operator nk ≡ 〈Ψ|Nk|Ψ〉 is then the scalar occupation number proper.

One possible definition of a classical system is one that has a large occupation number
nk � 1. When this is the case classical equations of motion can (should) be employed. The
occupation number itself in this case reduces to nk ≈ 〈Hk〉/k = Ek/k, with Ek the energy
stored in a given Fourier mode of the classical field1.

The numbers. What are the occupation numbers of the fields observed today? As an example
one can take some representative observed values. For instance a µGauss field intensity stretched
across a typical galaxy of a few kpc returns some n1/kpc ≈ 1090. Similarly, the lower bound
of 10−15Gauss coherent on a few Mpc-sized void has n1/Mpc ≈ 1084. The conversion factor

between magnetic field energy densities and distances is
√

1Gauss ≈ 4 · 1028/Mpc.
The occupation numbers are elephantine. Thus, it is “beyond any reasonable doubt” that

observed magnetic fields are completely classical today. If it is believed that these are the
outcome of some quantum dynamics taking place much earlier in the Universe, the question is:
when did the quantum-to-classical transition happen?

Table 1: Occupation numbers today∗

Where Size Strength nk

Galaxy 0.1 ÷ 10 kpc 10µGauss 1088÷96

Cluster Mpc (n÷µ)Gauss 10102÷96

Void Mpc 10−15Gauss 1084

Earth 104km 1Gauss 1054

LHC 14m 104Gauss 1037

∗These values do not reflect current Occupy movements trends.

The next two sections sandwich the evolution of the occupation number between late-time
classical regime (Sec. 2) and early inflationary quantum regime (Sec. 3). Sec. 4 reports the
result in a streamlined fashion.

2 Classical late-time dynamics

Classical MHD at large scales. Large occupation number concedes the use of classical
equations for the study of the dynamics. In the late Universe, and especially at large scales,
this is studied with the help of magnetohydrodynamics [16].

Circular currents induce magnetic fields. This can easily be seen by taking the curl of
Ampère’s circuital law and substituting the electric field using Faraday’s law of induction. One
arrives at a wave equation for the — physical — magnetic field, � ~Bp = −~∇×~Jp, that is sourced
by the curl of the current.

Now let us immerse electromagnetism in our Universe. Since the standard electromagnetic
field is conformally invariant, and since the Friedmann-Lemâıtre-Robertson-Walker metric is
conformally flat, Minkowski-space evolution equations are directly applicable to comoving elec-
tric ~E ≡ a2 ~Ep and magnetic fields ~B ≡ a2 ~Bp, where a is the scale factor of the Universe. The

dynamics is known once Ohm’s law, ~J = σ̂( ~E + ~u× ~B), where ~u is the bulk velocity of the
plasma and σ̂ is the comoving conductivity that has units of an inverse length, is specified.

The comoving conductivity is related to the usual one by σ̂ ≡ aσ. This is the crucial
quantity here, since it governs much of the evolution of the electromagnetic field at large scales.
A detailed study of the behaviour of σ̂ in the late Universe can be found in [17].

1For the relation between occupation number and squeezing see the Appendix.
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The action for the electromagnetic field is

S[Aµ] ≡
∫

d4x
√−g

[

−1

4
FµνF µν + JµAµ

]

. (5)

Here Fµν ≡ ∂µAν − ∂νAµ is the EM field tensor. For the current, the simplified Ohm’s law,
Jµ = σEµ = σ(0,−A′

i/a), can be used in the plasma frame where uµ = 0. In Coulomb gauge,
∂iAi = 0 = A0, the Euler-Lagrange equation become

A′′
i −∇2Ai + σ̂A′

i = 0 ; (6)

prime is conformal time η derivative. This equation is best dealt with in Fourier space Ai(x, η) →
Ai(k, η) where it reads

A′′
i + σ̂A′

i + k2Ai = 0 . (7)

Assuming the friction term to be time-independent for simplicity, the solution writes as

Ai ≈ C1 e−
1

2
{1+

√
1−4κ2}σ̂η + C2 e−

1

2
{1−

√
1−4κ2}σ̂η , (8)

where κ ≡ k/σ̂. The behaviour of the solution can be separated in the two regimes, κ � 1 and
κ � 1, hence

Ai ≈ e−σ̂η/2
(

C1 e−ikη + C2 eikη
)

for κ � 1 , (9)

Ai ≈ C1 e−σ̂η + C2 e−κ2σ̂η for κ � 1 . (10)

The known result that the vector potential is either essentially frozen in the plasma or an
oscillating and decaying wave, respectively, is recovered. The transition between these two
regimes is given by the comoving conductivity of the plasma σ̂. In particular, for early times
smaller than the inverse conductivity ε ≡ σ̂η � 1:

Ai ∼ e−ε/2 for κ � 1 ⇒ Freezing , (11)

Ai ∼ e−ε for κ � 1 ⇒ Freezing ; (12)

for late times larger than the inverse conductivity ε ≡ 1/(σ̂η) � 1:

Ai ∼ e−1/ε for κ � 1 ⇒ Diffusion , (13)

Ai ∼ e−κ2/ε for κ � 1 ⇒ Freezing , (14)

where the last statement is valid for sufficiently small momenta, i.e., large scales. Thus, diffu-
sion erodes more and more wavelengths as time goes by, if the conductivity remains constant.
Certainly, the fact that it grows can only make things worse.

Hamiltonian, no instabilities. It is instructive to look at the Hamiltonian for this system,
since any growing solution for the vector potential would appear there as an instability. The
Euler-Lagrange equation (6) can directly descend from the classical Hamiltonian

Hi = f2
(

π2
i + k2ϕ2

i

)

, (15)

where πi = A′
i and ϕi = Ai, and where σ̂ = 2f ′/f . Thence, this system, in absence of any

other interaction term, is positive-definite, and can not give rise to any instability. There are
no growing solutions in the plasma at late times. This is slightly more general than the result
of the previous paragraph, since there is no need to specify the behaviour of the conductivity.
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A lesson learnt. The comoving conductivity of the plasma is titanic, see e.g. Fig. 1 in [17],
reaching peaks of 1020÷25/Mpc for redshifts z ∼ 0 ÷ 108. Only the largest scales survive
the diffusion processes, in absence of other intervening processes such as galactic dynamos of
further phase transitions — which in reality do intervene, but typically at somewhat smaller
scales. At the same time, these large scale Fourier modes are frozen into the plasma and evolve
adiabatically with the expansion of the Universe.

Thus, the energy stored in a single mode is also following an adiabatic behaviour, and is
comovingly constant. This implies that the corresponding occupation number does not evolve,
and since it is very large now it must have been correspondingly large in the past, at least up
until Ohm’s law applies, which for large scales is from now backwards until the completion of
the reheating process.

3 Quantum inflationary regime

Quantum equations. The same action (5) can be used to describe the inflationary regime,
with no current Jµ = 0 as the de Sitter expansion would quickly wash out any pre-existing
plasma. If there is no pre-existing vacuum expectation value for the electromagnetic field at
any scale, then the field is quantised canonically: Ai(x, η) → ελ

i (k)Ai(k, η)aλ
k

+ h.c., with

[aλ
k
, aλ′†

k′ ] = δλλ′δ3 (k − k
′), and where the ε are polarisation vectors. The equation of motion

for the Fourier modes is simply a free wave equation

A′′
i + k2Ai = 0 ; (16)

picking the so-called Bunch-Davies vacuum as initial condition, the solutions are obviously
eternally boring and oscillating free waves Ai = exp(−ikη)/

√
2k.

The fact that there is a time-dependent background — the de Sitter expansion — is unbe-
knownst to the Ai, for the reason that (5) is conformal, that is, does not contain any dimensionful
coupling; this combined with the conformal flatness of the metric implies that in the pure de
Sitter regime any reference to the scale factor of the Universe a(η) is lost.

Notice that this is not the case, for instance, for metric perturbations, massive vector fields,
or even massless minimally coupled scalars, for their actions are not conformally invariant.
These examples are briefly touched upon below.

One occupation... The occupation number of the free electromagnetic waves just found is
about one, as expected for fields floating around in their vacuum states. One way of looking at
it is to compute the bare power spectrum

Ek =
1

2
Pk ≡

∑

i

{

|A′
i|2 + k2|Ai|2

}

= k . (17)

The spectrum provides the energy stored in each mode, and is integrated over all wavelengths
of interest to return the energy density ρem ∼

∫

dkk3Pk. Thence, nk ∼ Pk/k ∼ 1 as expected.
Quantum fields in vacuum, in absence of effective interactions with other, classical, fields,
happily simmer in their quantum pastoral life.

...does not lead to many: reheating. The de Sitter stage is typically followed by a first
order phase transition in which the inflaton field itself ultimately decays into known Standard
Model fields and repopulates the Universe. The dynamics of this epoch are extremely compli-
cated to understand, for it is a non-equilibrium regime, and suddenly finite-temperature too.
A handful reliable statements can however be composed, which will suffice for reaching the
argument’s conclusion.
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The reheating stage is depicted as one where the Universe goes from having one and only
one relevant scalar vacuum expectation value, the inflaton one, driving the expansion, to a stage
where the Universe is thermal and densely populated by all fields of whichever one’s favourite
theory is at the energy at which this transition is completed. Since at the very end the U(1)
photon is going to be thrown in the mix, there will be processes which develop an effective
conductivity for (the equivalent of) Maxwell’s laws.

In particular, this implies that the conductivity, being large at the end of reheating, and
zero at the beginning, is doomed to grow during this period. The build-up of the conductivity
in several toy models has been studied for example in [18, 19, 20, 21], where it was indeed found
that the rise of the σ̂ is very rapid, albeit possibly strongly inhomogeneous. The conclusion is
that, if anything, and in absence of any peculiar coupling for example to the oscillating inflaton,
reheating would strongly damp or freeze any electromagnetic field around at that time.

Notice that in principle one needs to solve the out-of-equilibrium, finite-temperature full
system of actual (quantum) equations of motion to be able to infer anything with certainty,
but, keeping with the spirit of this libel, it is now shown that these bizantinisms are unlikely to
bring anything new to the table. On top of that, imagining any sort of classicalisation during
this stage, with the Hubble horizon swallowing more and more wavelengths — the opposite of
what happens during inflation —, would imply that coherence could build up for modes which
stretch well beyond the causal horizon.

Interval: renormalisation. Another question is that of renormalisation, as in prin-
ciple the energy density belonging to the electromagnetic field (or any field, for that matter)
is formally infinite. The techniques are now standard background of curved space quantum
field theory, and for the electromagnetic field the result is the conformally anomalous term
ρem ∼ H4 where the constant Hubble parameter is H ≡ a′/a2. Notice that were all the
superhorizon modes have classical energy Ek = aH the total classical energy would be
infinite2: not an extremely smart way of removing infinities.

This fact prompts three quick remarks. First, this is a purely quantum theoretical result:
the conformal anomaly is the quantum vacuum energy density of the field under siege. The
conformal anomaly refers to a renormalised vacuum energy density, which by definition is
not a highly populated classical state: there is no hint to a transition from quantum to
classical in this process.

Second, the modes that cause the infinities and which demand renormalisation are the
ultraviolet ones, as in Minkowski space; in fact, the infinities arise in the very same identical
way, that is, free fields have infinite energy density because there is an infinity of them —
one at each spacetime point: the only difference is that the subtraction procedure has to be
performed in a diffeomorphism invariant way.

Third, inflation should not last forever; it neither extends indefinitely in the past and it
obviously decays at a given stage to kick-start the Big Bang. Since physically (causally) all
relevant modes are inside the Hubble horizon 1/aH at the onset of inflation, renormalisation
should not extend to arbitrary large wavelenghts, as these can never have seen de Sitter
approaching.

Furthermore, if there is a coupling and it is sufficiently weak to justify an adiabatic
renormalisation procedure, the solutions to the wave equations generalise to

Aadiabatic

i =
1√
2k

e−i
R

ωk dη , (18)

with the time-dependent frequency ωk varying adiabatically: ω′

k/ωk � aH . Clearly the
particle number is conserved, as it is an adiabatic invariant:

nk =
Ek

ωk

+
1

2
∼ 1 + O

(

ω′

k

aHωk

)

. (19)

2Of course it is not.
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Quantum-to-classical transition? Looking backwards in time the observed magnetic fields
approach the end of the reheating stage with a monumental occupation number. During re-
heating, at least for the most part, the conductivity grows, so that the magnetic field will at
best stay frozen: the occupation number back deep into reheating is still colossal.

But the occupation number at the end of inflation is one; enters reheating, whose detailed
quantum field theory, euphemistically speaking, is not yet mastered; what is certain is that
that buckets of fields are poured into the primordial brew, and the conductivity grows. At
some point it might be that the electromagnetic field begins its pilgrimage to classicalisation.
However, soon the occupation number is going to hit ten, then a hundred, and then a thousand:
the field feels already comfortable in its new classical vest; the burden of quantum decoherence
is already gone. Therefore, from this point on the dynamics are very well described by classical
equations, and these equations are known: (6), telling the story of an occupation number which
never ever grows again until today.

One may argue that there is a coupling term JµAµ, or something else more appropriate
in the quantum regime, which would do the job of boosting nk. However this, albeit not
conformal, only appears after the demise of the de Sitter expansion and in the aftermath of
inflaton decay, and would incur in precisely the same problem: if the (unknown) effects of such
terms — leaving aside causality issues — push the occupation number somewhat beyond one,
then classical equations apply, and the occupation number on large scales freezes to that value.

Counterexamples: curvature, magnetogenesis. The above “little no-go” for vacuum
magnetogenesis of course does not apply were the crucial assumption (vacuity, indeed) not to
hold. The first obvious counterexample concerns metric perturbations and the generation, and
classicalisation, of curvature perturbations. For the electromagnetic field itself, any departure
from conformal triviality would also do the trick.

For instance, during inflation curvature perturbations are generated because of the time-
dependent background; the quantum-to-classical transition can be analysed in depth and is part
of the standard lore of inflationary models. In short, following for example [7], one begins with
perturbed Einstein equations describing the behaviour of metric perturbations (scalar, vector,
and tensor) in a background driven by an almost constant energy density field, the inflaton.
There is a gauge-invariant quantity corresponding to quantised curvature perturbations, of-
tentimes referred to as “Mukhanov-Sasaki” variable, v(x, η), whose Fourier space Hamiltonian
reads

Hk = p−kpk + k2v−kvk +
z′

z
(p−kvk + v−kpk) , z ≡ a

H

(

−2H ′

3a

)1/2

, (20)

with pk the conjugate momentum to vk — recall that H ′ < 0 during slow-roll inflation. Once
again, rewriting in terms of creation and annihilation operators gives a standard H0

k
plus an

interaction term; interaction term which depends entirely on z(η), which is in turn connected
with the expanding background. Hence, there is an explicit term in the Euler-Lagrange equation
which communicates the effects of the non-trivial background to the quantum Fourier modes.

The equation of motion reads

v′′k +

(

k2 − z′′

z

)

vk = 0 . (21)

Choosing again the Bunch-Davies vacuum state as initial condition for all modes, the large scale
solution in slow-roll de Sitter expansion is given by

vk ∝ z√
2k

∝ a√
2k

for k2 � z′′

z
∼ a2H2 . (22)
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In this case the particle occupation number is then, from v ′
k ∼ aHvk � kvk,

nk ∼ v′k
2

k2
∼

(

aH

k

)2

� 1 , (23)

i.e., for large wavelengths vk finds its stairway to classical heaven. It is in this way that curvature
perturbations develop a large, quantum first, and then classical, occupation number.

In the context of magnetogenesis the same result can be obtained by explicitly breaking the
conformality of the action. This is typically done using coupling terms such as f 2F 2, gF ∗F ,
m2A2 and j · A, where ∗F is the dual of F , and the coupling functions f(η), g(η), m(η), j(η)
depend on time through the background inflaton. In fact, the dimensionful mass and current
need not depend on time explicitly, but they are usually engineered as such so that at the end
of inflation the action reduces to the standard Maxwell one.

The Euler-Lagrange equation displays the appearance of new terms, responsible for the
breaking of adiabaticity, and of particle number conservation:

f2A′′
i − f2∇2Ai + 2ff ′A′

i + g′εijk∂jAk + a2m2Ai + a2ji = 0 . (24)

From here onwards it is simply up to the theorist’s taste and inspiration to cook up a theory
for these couplings that is efficient and effective.

4 The end of the occupation

Finally, conclusions.

• The occupation number of the free, massless electromagnetic field during de Sitter expan-
sion is of order one for all modes: the field is purely quantum.

• In vacuum or in presence of weak (adiabatic) interactions, this number remains constant:
the field stays quantum.

• At the onset of reheating the field is hence all quantum.

• During reheating there might be (not causal?) processes which cohere or squeeze the
quantum fluctuations.

• In any case, once classicalisation begins, the occupation number starts growing from one
to ten to a hundred and so on.

• At any given desired precision, the field is now classical, and evolves according to classical
equations of motion.

• The conductivity during reheating builds up rapidly, and forces the magnetic field to
either diffuse or freeze: the occupation number decays or, at best, does not change any
longer.

• After reheating, the occupation number on large scales is again conserved in the plasma
due to the pantagruelic conductivity.

• Problem: the observed magnetisation of today’s large scales implies instead gargantuan
occupation numbers: the two giants do not get along with each other.

• No occupation number, no party.

This “little no-go” argumentation is entirely based on one assumption: the vacuity of the
initial electromagnetic field, and its persistence in the inflating regime. For most magnetogenesis
models this assumption does not apply, because there normally is a mechanism which inflates
the electromagnetic occupation number together with the Universe. Lacking such additional
gear, inflation alone won’t do.
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Appendix

Relation to squeezing. Squeezed states are often used in discussing the issue of classicali-
sation. Although squeezed states can be shown to not be a typical classical state in the sense
minimal Heisenberg uncertainty, they can also be shown to be extremely classical in a WKB
sense — that is, adiabatically. For example, it is well known that metric perturbations, and in
turn curvature perturbations, squeeze dramatically once they leave the horizon during inflation.
This can be seen again by solving the Euler-Lagrange equation for vk: (21). Using the interac-
tion Hamiltonian to define the time-evolution operators in the Schródinger representation one
defines a squeezing factor Rk which essentially tells how much the phase space of a given state
“squeezes” along some given axis. In the curvature perturbation case this is shown to obey

Rk = arcsinh
1

2kη
� 1 for kη � 1 .

Moreover, there is a direct relation between the squeezing and the occupation number:

nk = sinh2 Rk →
(

aH

k

)2

,

as (23) also figured. The corresponding situation for the free electromagnetic field is that the
squeezing factor is of order one for order one occupation number: no squeezing at all, thence
no WKB classicality.

Addendum. In the process of renormalising a vacuum expectation value, all sorts of

quirky things can happen: negative energies, rational numbers of spacetime dimensions, etc.

However, at the end, the final result should be physically sensible. There does not seem to be

a fundamental problem with negative power spectra as long as these turn to positive-define

once physical quantities are computed. However, physical negative energy densities are only

acceptable, as in the Casimir effect, when part of a system whose total energy density is well

defined. If the result of some renormalisation procedure for the Universe’s vacuum energy

returns a negative value, being there no outer environment, said procedure should at least

be regarded with sheer suspicion.
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