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Abstract

Parametrized post-Newtonian formalism is one of the standard methods of experimental
check of gravity theories and limiting the model parameters. In this work we consider
the PPN-paramertization of Randall-Sundrum II black hole solutions and show that these
solutions are in good agreement with the GR predictions and the observation results.

1 Introduction

Black hole solution is a basic one for any theory of gravity. It describes the compact object that
a very massive star at the end of its life cycle collapses into and it also features the curvature of
the spacetime produced by the presence of matter specific for the considered gravity model. Any
extended theory of gravity should be consistent with the predictions of GR and the observations’
results therefore the existence of black holes and their properties are important indicators of the
theory’s viability. In this work we consider the weak-field limit of the Randall-Sundrum solutions
found by Figueras and Wiseman and by Abdolrahimi, Cattoën, Page and Yaghoobpour-Tari
to make certain that they agree with GR. We also look for the opportunity to distinguish the
Randall-Sundrum model experimentally via these solutions.

2 Parameterized post-Newtonian formalism

Parametrized post-Newtonian limit (PPN) was originally constructed for comparing different
metric theories of gravity with each other [1, 2, 3, 4, 5, 6]. For its application several requirements
should be fulfilled:

• weak field limit,

• asymptotically flat spacetime,

• small velocities of matter the motion of which obeys the hydrodynamical equations for
the prefect fluid.

Such parametrization allows to distinguish metric theories from each other on a number
of properties such as the measure of space curvature produced by unit mass, the non-linearity
in gravitational superposition, the existence of preferred location and frame effects and the
violation of conservation laws of energy, momentum and angular momentum. These properties
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are expressed through the post-Newtonian parameters that are measured experimentally with
high precision [6].

Using the parametrized post-Newtonian formalism the metric can be represented as the
perturbative expansion around Minkowski spacetime ηµν [5]:

gµν = ηµν + hµν ,

h00 ∼ 1/r2, hoj ∼ 1/r3, hij ∼ 1/r.
(1)

In the second post-Newtonian limit the corrections describe the gravitational waves effects and
contain the terms of order [7, 8]:

h00 ∼ 1/r3, h0j ∼ 1/r2.5, hij ∼ 1/r2. (2)

To obtain the post-Newtonian parametrization of the considered metric the corresponding
field equations should be solved:

Rµν = 8π

(

Tµν −
gµν

2
T

)

, (3)

where left part can be expressed in terms of perturbations hµν to Minkowski metric ηµν [5]:

R00 = −
1

2
∇2h00 −

1

2

(
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)
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2
h00,j
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1

2
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−
1

4
|∇h00|

2 +

+
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hjkh00,jk,

R0j = −
1

2

(

∇2h0j − hk0,jk + hkk,0j − hkj,0k

)

,

Rij = −
1

2

(

∇2hij − h00,ij + hkk,ij − hki,kj − hkj,k,i

)

.

(4)

Stress-energy tensor describing the behavior of the matter and appearing in the right part of (3)
can be expressed in terms of the post-Newtonian potentials and the post-Newtonan parameter
γ parameters [5]:

T 00 = ρ
(

1 + Π + v2 + 2U
)

,

T 0i = ρ

(

1 + Π + v2 + 2U +
p

ρ

)

vi

T ij = ρ

(

1 + Π + v2 + 2U +
p

ρ

)

vivj + pδij(1 − 2γU),

(5)

where ρ, p and v are the density, the pressure and the velocity of matter correspondingly, U is
the gravitational potential with the sigh reversed, Π is the density of internal energy including
all forms of non-rest-mass, non-gravitational energy, e.g., energy of compression and thermal
energy. These post-Newtonian potentials obey the following rules [5]:

U ∼ v2 ∼ p/ρ ∼ Π ∼ 1/r. (6)

The units in which G = c = 1 are used here.
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3 Randall-Sundrum gravity

The Randall-Sundrum model considers four-dimensional branes with tension embedded into
a five-dimensional spacetime (bulk) that is assumed to have an AdS5 geometry [9, 10]. All
the matter and the three fundamental interactions (electromagnetic, strong nuclear and weak
nuclear) are localized on the brane except gravity which can propagate into the bulk along the
additional dimension. This extra dimension is allowed to be noncompact and even infinite.
Randall-Sundrum I (RSI) model considers two branes with different properties helping to solve
the hierarchy problem [9]. Moving the second brane to the infinity led to the Randall-Sundrum
II (RSII) model with one brane [10].

First black hole solutions were obtained by Chambling, Hawking and Reall [11] and by
Dadhich, Maartens, Papadopoulos and Rezania [12] in 2000. A remarkable conjecture was then
made that static black holes cannot exist in RSII for a radius much greater than the AdS length
` [13, 14, 15]. By using the numerical methods [16, 17] black holes in 5D RSII with a radius up
to ∼ 0.2` and for 6D up to ∼ 2.0` were constructed [18, 19, 20]. However, by using the same
methods, it has subsequently been argued that even very small RSII static black holes do not
exist [21, 22]. In 2011 Figueras and Wiseman numerically constructed large RSII static black
holes with radius up to ∼ 20` close to the associated AdS5-CFT4 solution [23]. Soon after them
in 2013 Abdolrahimi, Cattoën, Page and Yaghoobpour-Tari found the infinite-mass black hole
solution [23] by a different numerical method (ACPY solution). This solution agrees well with
the Figueras-Wiseman one [23] and thus adds further evidence for the existence of large RSII
black holes, despite the doubts expressed by previous works.

4 Results

4.1 Figueras-Wiseman solution

To obtain the post-Newtonian parametrization of the Figueras-Wiseman solution the following
field equations were used:

Gµν = 8πG4T
brane
µν + ε2

{

16πG4〈T
CFT
µν [g]〉 + aµν [g] + log ε bµν [g]

}

+ O(ε4 log ε), (7)

where G4 is the usual four-dimenstional graviational constant, T brane
µν is the stress-enegry ten-

sor of the matter localized on the brane, the additional stress-enegry terms 〈T CFT
µν [g]〉, aµν [g]

and bµν [g] describe the influence of the extra dimension. They depend on metric only and are
expressed via the Fefferman-Graham expansion [25, 26]; ε is a small perturbation parameter in-
dicating the deviation of the brane position from the equilibrium state z = 0, z is the coordinate
along the extra dimension.

The additional term in the post-Newtonian expansion of the Figueras-Wiseman solution
calculated in this paper is

δhFW
00 =

121

27

ε2

`2

M2

r2
, (8)

where M is the mass of the central object. In the considered case it equals the solar mass.
The obtained value (8) lies within the 1PN limit (1) and points at a potentially observable

effect. In Randall-Sundrum model gravity is allowed propagate into the bulk along the extra
dimension therefore the effect described by (8) most likely leads to the negative nonlinearity in
gravitational superposition. In other words the resulting gravitational field produced by two
or more massive objects can be less than the direct vector sum of their contributions. The
parameterized post-Newtonian (PPN) parameter β is responsible for such an effect [5, 6, 27].
Therefore the result (8) should be expressed as follows:

β = 1 −
ε2

`2

121

108
M2. (9)
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The constraint on the PPN parameter β obtained from analysis of the lunar laser ranging
data [27] is |β−1| ≤ 1.1×10−4. The admitted region of the AdS length is limited by the results
of the Newton’s law test l < 10−5 m [29]. Therefore the upper limit on the value of ε is:

ε ≤ 5.7 × 10−47 � mP l. (10)

Originally the parameter ε was assumed to be negligibly small and the vanishing value
found in (10) implies that in fact ε = 0. Thus the Figueras-Wiseman four-dimensional black
hole solution is not only self-consistent but well consistent with the solar system constraints as
well. Therefore this solution is indistinguishable form GR in the 1PN limit after all.

4.2 ACPY solution

The ACPY solution [24] is asymptotically conformal to the Schwarzschild metric and includes
a negative five-dimensional cosmological constant Λ5:

ds2 = −

(

1 −
2M

r

)

dt2 +

[

1 −
1

−Λ5r2

r − 2M

r − 1.5M

(

F (r) − r
dF (r)

dr

)](

1 −
2M

r

)−1

dr2 +

+

[

r2 +
F (r)

−Λ5

]

dΩ2

F (r) = 1 − 1.1241

(

2M

r

)

+ 1.956

(

2M

r

)2

− 9.961

(

2M

r

)3

+ . . . + 2.900

(

2M

r

)11

.

(11)

The function F (r) describes the perturbation caused by the bulk. The best fit for it was
obtained in [24].

The field equations induced on the brane were derived by Sasaki, Shiromizu and Maeda [30]:

Gµν = − Λ4gµν +
8π

M2
Pl4

Tµν +
8π

M3
Pl5

Sµν − Eµν , (12)

where Λ4 is usual four-dimensional cosmological constant, gµν is the metric on the brane, Tµν

is the stress-energy tensor of the matter localized on the brane, Sµν is the local quadratic
stress-energy correction, Eµν is the four-dimensional projection of the five-dimensional Weyl ten-
sor. MPl4 is usual four-dimensional Planck mass and MPl5 is the fundamental five-dimensional
Planck mass which is typically much less than the effective Planck mass on the brane.

The induced metric on the brane is asymptotically flat, the bulk is an anti-de-Sitter space-
time as in the original Randall-Sundrum scenario [10], then Eµν = 0 [31]. Therefore the cor-
rection term due to the contribution from ACPY topology (11) that follows from (12) has the
form

δhAP
00 =

l2M2

96

1

r4
+ O(r−5). (13)

According to (1) the expansion term of the 1PN-order should be proportional to r−2. The
correction (13) contains the next perturbation order which lies beyond 1PN. Therefore the
obtained contribution (13) cannot be observed in the solar system experiments as well. This
conclusion on the Randall-Sundrum model predictions confirms the result for the Figueras-
Wiseman solution.
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5 Conclusions

Consideration of the post-Newtonian expansion of the Figueras-Wiseman solution [23] reveals
such possible effect as a negative nonlinearity of gravitational superposition (9). It naturally
results from the theory itself because gravity is allowed to propagate to the extra dimension
in Randall-Sundrum model. However the breaking of gravitational superposition turns out
to depend on a negligibly small parameter (10) thus the predictions of the Figueras-Wiseman
solution fully agrees with GR and the present observations. This effect may influence the strong
field regime (close binary systems, black holes) as a consequence of curvature growth. So the
next step could be the search of such features of the Randall-Sundrum model in the strong field
limit. Fortunately this investigation is admissible as the large stable black hole solutions for
RSII black holes have been found [23, 24].

The consideration of the other black hole solution by Abdolrahimi, Page et al. [24] shows
that the terms describing the bulk influence (13) greatly exceed the limits of the post-Newtonian
approximation. As a result both recent large Randall-Sundrum black holes solutions seems to
be well consistent with GR at the solar system scale. For obtaining the limits on its parameters
other tests are needed.
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