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Abstract

The method is proposed for the phenomenological description of particle creation by
external fields (in the presence of gravitational field or without it).

The great activity in investigation of particle creation in strong gravitational fields [1] re-
vealed the importance of such processes both in cosmology and in black hole physics. It appeared
that the most difficult problem is tat of taking into account the back reaction on the space-time
metrics. And it is not only the influence of the created particles, what is rather easy to do,
at least in principle, but also the contribution due to the vacuum polarization accompanying
necessarily the creation processes (and being, in a sense, its cause). The main obstacle to do
this self-consistently is that the construction of the quantum part of the specific model requires
the knowledge of the boundary conditions which, in turn, can be formulated only after solving
the corresponding Einstein equations with the right hand side (the energy-momentum tensor)
with the properly averaged quantum entities. In some special cases when, by definition, the
space-time possesses very high symmetry, such a procedure can be fulfilled, at least, in the
one loop approximation. For instance, for homogeneous and isotropic cosmological models the
quantum normalization demands the modification of the initial classical Einstein-Hilbert action
by adding the term quadratic in the scalar curvature. This lead to the violation of the energy
dominance - the necessary condition of the well known singularity theorems. The most famous
example is the Starobinsky inflationary model [2].

Our idea is the following. The processes of particle creation are essentially nonlocal. But, if
the external fields are strong enough, the separation between just created particles becomes of
order of their Compton length, and we can safely approximate them by some condensed matter.
Since in such an approach the nonlocal processes become, formally, the local ones, there is a
hope that the local vacuum polarization ill be automatically incorporated into the formalism as
well. The same concerns also the trace anomalies that play essential role in quantum processes
of particle creation both in cosmology [3] and in the black hole thermodynamics [4]. One should
be rather cautious when constructing the formalism, because it may appear controversial to use
the conventional form of the energy-momentum tensor for created particles and just demanding
their number non-conservation. The problem is that in deriving the hydrodynamical energy-
momentum tensor, as how it is described in the textbooks, one starts from the action for a single
particle and obtain the equation of motion by varying its world line, find the expression for the
energy and momentum, and then consider the particle ensemble and take the limit of continuous
distribution. Therefore, by doing this, one make use of the Lagrangian coordinates for describing
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condensed matter and, implicitly, the conservation of particle number.It follows from this, that
we need the more appropriate Euler coordinates from the very beginning, that is, already in the
action integral. Such a formalism was developed by J.R.Ray [5], who demonstrated also that
the equation of motion for the perfect fluid derived from the proposed action integral is just
the famous Euler hydrodynamical equation. The advantage of the Ray’s approach is that the
particle conservation condition (the continuity equation) enters the action integral explicitly
through the corresponding constraint with the Lagrange multiplier.

The first attempt to describe the particle creation phenomenologically was made by the
author in 1987 [6]. The proposed recipe was very simple: instead of the continuity equation,
considered as one of the constraints, just to equate the number of created particles in unit volume
per unit time interval not to zero but to some function of the responsible for this process external
fields. Among other things, it was shown that, indeed, it is possible to violate in this way the
energy dominance condition. Here we will would like to continue that line of investigation, but
making some improvements and obtaining more physically clear and transparent equations.

Let us start with the simplest model: construction of the constraint dynamics for the perfect
fluid using the Euler variables.

The dynamical variables in this case are the number density n(x), the four velocity vector
of fluid’s flow uα(x) and some auxiliary field X(x) for enumeration of the world-lines. The
constraints are the normalization condition uβuβ = 1, the continuity equation (particle number
conservation) (nuβ);β = 0 and X,βuβ = 0 → X(x) = const on every trajectory (here ”comma”
denotes the partial derivative, while ”semicolon” - covariant derivative with respect to the
space-time metrics gαβ and metric connections). The (invariant) energy density of the fluid
equals

ε(n,X) = µ(X)n + nΠ(n) , (1)

where Π(n) is the potential energy describing the (self)interaction between the constituent
particles, and µ(X) is their mass distribution. The pressure p(n) is

p = n2 dΠ

dn
= −ε + n

∂ε

∂n
. (2)

The action integral S can be written in the form (
√
−g is the determinant of the metric tensor):

S = −

∫

ε(X,n)
√
−gdx+

∫

λ0(x)(uβuβ−1)
√
−gdx+

∫

λ1(x)(nuβ);β
√
−gdx+

∫

λ2(x)X,βuβ√−gdx .

(3)
Here λ0(x), λ1(x) and λ2(x) are the Lagrange multipliers. Variation of this action integral
with respect to the dynamical variables and Lagrange multipliers gives us the following set of
equations of motion and constraints:

−
∂ε

∂n
− λ,βuβ = 0

2λ0uα − nλ1,α + λ2X,α = 0

−
∂ε

∂X
− (λ2u

β);β = 0

uβuβ = 1

(nuβ)β = 0

X,βuβ = 0 (4)

It is easy to show, by calculating a convolution of the second equation with the four-velocity
vector and making use of the constraints, that 2λ0 = −(ε+ p). Also, it is not difficult, by using
the integrability conditions (λ1;αβ = λ1;βα and X;αβ = X;βα ) and constraints, to obtain the
hydrodynamical Euler equation.

((ε + p)uβ);βuα + (ε + p)uβuα;β = p,α (5)
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Thus, the Lagrange multipliers are, effectively, decoupled, and it is become possible to solve
first the equations of motion for dynamical variables and only then to find out the multipliers.
In what follows we will also need the expression for the energy-momentum tensor, Tαβ =

2√
−g

∂(
√
−gL)

∂gαβ (L is the Lagrangian). For the hydrodynamical action, considered above, it reads

Tαβ = −2λ0uαuβ + gαβ(ε − λ0(u
γuγ − 1) + nλ,γuγ − λ2X,γuγ) . (6)

By use of the equations of motion and constraints, it can be rewritten in the famous form,

Tαβ = (ε + p)uαuβ − pgαβ . (7)

It is noteworthy to say that the Euler equation is just the continuity equation for such a tensor,
T β

α;β = 0.
The written above action integral is not unique, not only in its form but also in the choice

of the independent dynamical variables. One can, for instance, to write the first term under the
integral sign as ε(n)uβuβ which is numerically remains the same because of the first constraint
(= normalization condition). This will change both the equations of motion and the primary
form of the energy-momentum tensor, but eventually, will result only in a redefinition of the
Lagrange multiplier λ0. The only reason to write it in such a way is aesthetic one - just a
reminiscence of the conventional derivation of the Lagrange equations for a single relativistic
particle. With the invariant particle density n the situation is quite different. The problem
is that the total number of particles N is something absolute, it does not depend on the
metrics introduced on the given manifold, but the invariant number density does. Namely, it
depends on the volume introduced together with the metrics and changes, say, with conformal
transformation. So, it is more logical to use the scalar density n̂ = n

√
−g instead of the invariant

density n. Of course, when doing this one should still consider the invariant energy density ε as
the same function, ε(n) = ε(n̂/

√
−g) and take into account this new dependence on the metric

tensor when calculating the energy-momentum tensor. It is not very difficult to check that the
final results (both the Euler equations and the energy-momentum tensor in terms of the energy
density and the pressure) will remain the same.

Now, let us start to generalize the scheme in order to include in it the particle creation
processes. The simplest (and naive) way to do this is just to replace the continuity equation
(nuα);α = 0 by (nuα);α = 1√

−g
(n̂uα),α = Φ (as was done in [6]), where Φ is some function of

the invariants characterizing the field(s) that causes the particle creation. Here we consider two
different cases: creation of particles that are quanta of some scalar field and creation of electron-
positron pairs by an external electromagnetic field. We postpone the latter to the end of the
paper and begin with the scalar field. It should be noted that in this case the creation is caused,
actually, by the ”external” gravitational field and not by the scalar field itself. The physics of
the process is the following. The gravitational field gives rise to the vacuum polarization of
the quantum vacuum fluctuations of the scalar field, and it is this polarization that ”takes
responsibility” for the particle creation. In our phenomenological approach these created scalar
quanta are described by the classical energy density, particle number density and four-velocities,
so, we don’t need to introduce any classical scalar field in the scheme. Thus, the function Φ
that describes the law of creation should depend on the gravitational invariants. Calculations
made by many groups of scientists [1] show that this function is proportional (at least, in the
one-loop approximation) to the square of the Weyl’s tensor Φ = aC 2, so, the total action for
the matter fields takes the form

S = −

∫

ε(X, n̂/
√
−g)

√
−gdx +

∫

λ0(x)(uβuβ − 1)
√
−gdx +

∫

λ1(x)((nuβ);β − Φ)
√
−gdx

+

∫

λ2(x)X,βuβ
√
−gdx . (8)
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The equations of motion is almost the same as before, one should only change 2λ0 = −(ε+p) to
2λ0 = ε − p and, replace the continuity equation for the number density by the law of particle
creation. Of course, the Euler equation is now modified: there appears and additional term:

((ε + p)uβ);βuα + (ε + p)uβuα;β + λ1,αΦ = p,α (9)

Note, that, by the equations of motion, λ1,α = − ∂ε
∂n

uα + λ2X,α. In the case of the coherent
perfect fluid (p = 0 = dust) this modified Euler equation becomes

µuβuα;β +
Φ

n
(µuα + λ1,α) = 0 (10)

or

µuβuα;β +
Φ

n
λ2X,α = 0 (11)

which in the absence of particle creation reduces to the geodesics equation as it should be.
Surely, the expression for the energy-momentum tensor will also be modified. Here we write it
in the implicit form:

Tαβ = (ε + p)uαuβ − pgαβ + Aαβ + λ1Φgαβ . (12)

where Aαβ = −2 δ(λ1Φ)
δgαβ . The continuity equation, T β

α;β = 0, after making use of the equation of
motion, gives us the equation for the Lagrange multiplier λ1,

Aβ
α;β + λ1Φ,α = 0 . (13)

It is in the function λ1, where the information about the vacuum polarization and trace anomaly
is encoded. Thus, together with the modified Euler equation and the Einstein (or some other)
gravitational equations this closes the set of dynamical equations.

Let us turn now to case of the external electromagnetic field. Particles are created in
pairs, say, electrons and positrons. Separately, they cannot form the perfect fluid, instead -
the electron-positron plasma in the external field. The problem is too complex. For the sake
of simplicity (and brevity) we will consider all the particles as noninteracting directly with
each other, i.e., the hydrodynamical pressure is absent, p = 0, and the energy density equals
ε = m0n, where mo is the electron mass, so, we assume that there are no other particles from
the very beginning except the created ones. And, again, for the sake of simplicity we will
consider in this paper only the case of the external electric field. Thus, the total action integral
contains two (actually) identical hydrodynamical parts (we will distinguish them by the ”tilde”
sign), the conventional electromagnetic action, the part describing the particle’s electromagnetic
interaction and, at last, that one, responsible for the pair creation. Namely,

Stot = Shydro + S̃hydro + Sem + Sint + Scr

Shydro(S̃hydro) = −

∫

m0n̂dx +

∫

λ0(u
αuα − 1)

√
−gdx + λ2X,αuα

√
−gdx

Sem = −
1

16π

∫

FαβFαβ√−gdx , (14)

where Fαβ = Aβ;α − Aα;β = Aβ,α − Aα,β - the electromagnetic field tensor, and Aα - its
vector-potential. To go further, we need to introduce the electric current four-vector. In our
case of identical particles (antiparticles) it is simply jα = enuα (j̃α = −eñũα), where e is the
elementary electric charge. The action integral for their interaction with the electromagnetic
field reads as follows

Sint = −

∫

Aα(ĵα +̂̃jα)dx+

∫

λ3(j
α + j̃α);α

√
−gdx+

∫

λα(ĵα−en̂uα)dx+

∫

λ̃α (̂̃jα + ễnũα)dx .

(15)
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The definition of the electric current four-vector jα with the corresponding vectorial Lagrange
multiplier λα is added to the conventional Aαjα-term for further convenience, while the con-
tinuity constraint (jα + j̃α);α is really necessary here, because due to the change in the set of
dynamical variables (the four-velocity uα instead of the world-line trajectory x(τ) in the conven-
tional description) the gauge invariance is not automatically incorporated into the formalism.
The last term in the total action integral, Scr, is responsible for the particle creation,

Scr =

∫

λ1((nuα);α − Φ(Lem))
√
−gdx +

∫

λ̃1((ñũα);α − Φ(Lem))
√
−gdx . (16)

where Lem = − 1
16π

FαβFαβ . Now the dynamical variables are n̂ = n
√
−g, ˆ̃n = ñ

√
−g, uα, ũα, X, X̃, Aα, ĵα =

jα√−g, ˆ̃jα = j̃α√−g. By varying the total action integral with respect to these variables (ex-
cept the vector-potential Aα) and Lagrange multipliers one gets the following set of equations
of motion and constraints

n̂ : −m0u
βuβ − λ1,βuβ − eλβuβ = 0

uα : −2m0nuα + 2λ0uα − nλ1,α + λ2X,α − enλα = 0

X : (λ2uβ);β = 0

λ0 : uβuβ = 1

λ1 : (nuβ);β = Φ(Lem)

λ2 : X,βuβ = 0

jα : −Aα − λ3,α + λα = 0

λ3 : (jβ + j̃β);β = 0

λα : jα = enuα (17)

(for the ”tilde” equations one should change e → −e). In the same way as before we can easily
find, that 2λ0 = m0n ; 2λ̃0 = m0ñ. Also, λα = λ̃α. By varying the vector-potential Aα we
obtain the following modified Maxwell equations

((

1 − (λ1 + λ̃1)
∂Φ

∂Lem

)

Fαβ

)

;β

= −4π (jα + ̃α) . (18)

This reminds the Maxwell equations inside a condensed matter with the ”dielectric constant”
(

1 − (λ1 + λ̃1)
∂Φ

∂Lem

)

.

Making use of all the equations of motion as well as the integrability conditions and con-
straints, we derive the following expression for the modified Lorentz force:

m0uα;βuβ = eFαβuβ −
λ2

n
Φ(Lem)X,α

m̃0ũα;βũβ = −eFαβ ũβ −
λ̃2

ñ
Φ(Lem)X̃,α . (19)

At last, let us find the energy-momentum tensor. After some calculations one gets the result

Tαβ = m0nuαuβ + m0ñũαũβ

−
1

4π
DαγF γ

β +
1

16π
gαβDγδF

γδ

+ (λ1 + λ̃1)

(

Φ − Lem
∂Φ

∂Lem

)

gαβ (20)

where

Dαγ =

(

1 − (λ1 + λ̃1)
∂Φ

∂Lem

)

Fαγ (21)
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It seems very interesting that in this case the continuity equation, T β
α;β = 0 is automatically

satisfied despite of the presence of the Lagrangian multipliers which are not the dynamical
variables.

The author is grateful to Vyacheslav Dokuchaev, Yurii Eroshenko and Alexey Smirnov for
valuable discussions. I would like to thank for the financial support the Russian Foundation for
Basic Researches, grant 13-02-00257.
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