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Abstract

The main properties of (3+1)-dimensional U(1) gauged Q-balls are discussed. A method
for obtaining the charge and the energy of such gauged Q-balls using only the nongauged
solution for the scalar field in the case, when the back-reaction of the gauge field on the
scalar field is small, is presented, as well as the corresponding criteria of its applicability.

It is well known that, according to the well-known Hobart-Derrick theorem [1], there are no static
solitons in the (3+1)-dimensional scalar field theory with a nonnegative scalar field potential.
Apart from taking potentials which are not nonnegative (moreover, it is not difficult to show
that all such solutions are classically unstable), there is a simple way to overcome the restriction
put by the Hobart-Derrick theorem. Indeed, one can consider a theory of complex scalar field
with global U(1) symmetry, possessing a time-dependent solution of the form

φ(t, ~x) = eiωtϕ(~x). (1)

Such solutions were proposed in [2] (see also [3] for some early papers, in which solitons of this
type were discussed). Following [4], now non-topological solitons of this kind are called Q-balls.

A simplest generalization of Q-balls to the gauged case, i.e., from the global U(1) symmetry
to the gauge U(1) symmetry, is straightforward. To our knowledge, for the first time this
was done in [5]. Later such U(1) gauged Q-balls were discussed in many papers, for the most
interesting results see [6, 7]. In the present manuscript we briefly present some new results for
these solutions (see [8] for details).

We start with the action

S =

∫

d4x

(

(∂µφ∗ − ieAµφ∗)(∂µφ + ieAµφ) − V (φ∗φ) − 1

4
FµνF µν

)

(2)

and take the standard spherically symmetric ansatz for the fields describing a gauged Q-ball:

φ(t, ~x) = eiωtf(r), A0(t, ~x) = A0(r), Ai(t, ~x) ≡ 0, (3)

where µ = 0, 1, 2, 3; r =
√

~x2 and f(r), A0(r) are real functions which vanish at r → ∞. We
suppose that the function f(r) has no nodes and f(0) > 0. For the scalar field potential, the
conditions V (0) = 0, dV

df

∣

∣

f=0
= 0 are supposed to fulfill.
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The corresponding equations of motion take the form

2e2(ω + g)f 2 = ∆g, (4)

2(ω + g)2f + 2∆f − dV

df
= 0, (5)

where ∆ =
3
∑

i=1
∂i∂i, g = eA0, V (f) = V (φ∗φ). We define the charge of a gauged Q-ball as

Q = 2

∫

d3x(ω + g)f 2. (6)

We note that the physical charge is Qphys = eQ, but for convenience, below we will use the
charge Q, not Qphys. Without loss of generality for simplicity we can consider ω ≥ 0, which
implies Q ≥ 0. Indeed, according to [6] the sign of ω + g always coincides with the sign of ω,
whereas g ≡ 0 for ω = 0 (see [5]).

The energy of a gauged Q-ball at rest is defined by

E =

∫

d3x

(

(ω + g)2f2 + ∂if∂if + V (f) +
1

2e2
∂ig∂ig

)

. (7)

It is well known that for ordinary (nongauged) Q-balls the relation

dE

dQ
= ω (8)

holds. It is not difficult to show that the same relation (8) holds for U(1) gauged Q-balls
too. The calculation is straightforward and we do not present it here (see [8] for details).
Although this relation is very simple, it leads to a rather important consequence. Indeed, there
exist well-known estimates for the maximal charge of stable gauged Q-balls, presented in [6]
(although these estimates were obtained within the particular model, they are used in many
papers concerning gauged Q-balls). It is stated in [6] that for a charge Q, such that for a Q-ball
of this charge the inequality dE

dQ
> M holds, it is energetically favorable to have a Q-ball with

the charge Qmax and Q−Qmax free scalar particles. The maximal charge Qmax is defined as a
solution to equation dE

dQ
= M . But let us recall that the inequality ω < M should hold for a Q-

ball in a theory with dV (φ∗φ)
d(φ∗φ)

∣

∣

φ∗φ=0
= M2 > 0 (see [5, 6]), otherwise the corresponding solution

to equation (5) does not fall off at infinity rapidly enough to ensure the finiteness of the Q-ball
charge and energy. So, for any gauged Q-ball in such a theory the inequality dE

dQ
= ω < M

holds, and Q-balls with dE
dQ

≥ M can never exist. Thus, the procedure used in [6] for estimating
the value of the maximal charge of stable gauged Q-balls contradicts the main properties of
gauged Q-balls and can not be considered as correct, as well as the consequent statement about
the existence of the maximal charge (see also discussion in [8]).

Now we turn to the particular case when the back-reaction of the gauge field is supposed
to be small (|g(r)| � ω, |f(r) − f0(r)| � f0(r), where f0(r) = f0(r, ω) is a nongauged Q-ball
solution in the case e = 0). In this case one can use the linear approximation in g(r) and
ϕ(r) = f(r) − f0(r) above the nongauged background solution, which simplifies the analysis.
Equations (4) and (5) can be reduced to the form

∆g − 2e2ωf2
0 = 0, (9)

∆ϕ + ω2ϕ + 2ωgf0 −
1

2

d2V

df2

∣

∣

∣

∣

f=f0

ϕ = 0, (10)

where f0 is defined as a solution to the equation

ω2f0 + ∆f0 −
1

2

dV

df

∣

∣

∣

∣

f=f0

= 0. (11)
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In this approximation, the charge and the energy take the form

Q = Q0 + 4Q = Q0 + 4π

∞
∫

0

drr2(2gf2
0 + 4ωf0ϕ), (12)

E = E0 + 4E = E0 + 4πω

∞
∫

0

drr2(gf2
0 + 4ωf0ϕ) (13)

where Q0 and E0 are defined by Eqs. (6), (7) with f0(r) instead of f(r) and with g ≡ 0.
Now we are ready to calculate 4Q and 4E. We will not present the detailed calculations,

which can be found in [8], but briefly present the main steps of the derivation. First, we take
equation (10), multiply it by df0

dω
, integrate over the spatial volume and perform integration by

parts. Then, we take equation (11) and differentiate it with respect to ω. Using the latter
equation, we arrive at

ω

∫
(

gf0
df0

dω
− ϕf0

)

d3x = 0. (14)

Now, let us consider the charge (12). According to (14),

4Q = 4π

∞
∫

0

drr2g
dq

dω
, (15)

where q = 2ωf 2
0 . Using the relation ∆ dg

dω
= e2 dq

dω
, which follows from (9), we can show that

∫

d3xg
dq

dω
=

1

2

d

dω

∫

d3xgq. (16)

Let us define

I =
1

2

∫

d3xgq. (17)

Then, for (12) and (13) we get

4Q =
dI

dω
, 4E = ω

dI

dω
− I. (18)

It is possible to calculate the integral I explicitly [8]. Indeed, for a given background solution
f0, the spherically symmetric solution to (9), which vanishes at infinity, takes the form [5]

g = g(r) = −e2

∞
∫

r

q(y)ydy − e2 1

r

r
∫

0

q(y)y2dy. (19)

Substituting it into (17), after some algebra we get

I = −16πe2ω2

∞
∫

0

f2
0 (r)r

r
∫

0

f2
0 (y)y2dy dr. (20)

Thus, to examine the main properties of gauged Q-balls in a theory with a small back-reaction
of the gauge field, it is not necessary to solve explicitly the corresponding linearized differen-
tial equations. Instead of this, one can simply take the corresponding nongauged background
solution f0(r, ω) to obtain I and calculate the corresponding E(Q) dependence.
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Of course, the result presented above can be used only if the corrections are much smaller
than the background solution itself. In order to check the validity of the linear approximation,
we propose the parameter (we present it without the detailed derivation, it can be found in [8])

α(ω) = max
i

{ |g(0)|
ω

,
|24E − ω4Q|

2ωQ0
,

∣

∣

∣

∣

g(0)

f0(ri)

df0(ri)

dω

∣

∣

∣

∣

}

. (21)

One should calculate (21) at several different points ri for a given ω to obtain better estimates.
The fulfillment of the condition α(ω) � 1 suggests, although it does not ensure, that the linear
approximation is valid. Similarly to the case of (20), only the background solution f0(r, ω)
is necessary for calculating α(ω). It is necessary to note that although the factor α(ω) is
proportional to e2, the smallness of e2 does not guarantee the fulfillment of α(ω) � 1 in the
general case. A simple justification of this fact can be found in Appendix B of [8].

Finally, we compare the energies of gauged (obtained in the linear approximation in α(ω))
and nongauged Q-balls at a given charge Q. Equality of charges of gauged (with ω = ω1) and
nongauged (with ω = ω2) Q-balls leads to

4Q(ω1) ≈ (ω2 − ω1)
dQ0

dω

∣

∣

∣

∣

ω=ω1

. (22)

Thus, for the energies of gauged and nongauged Q-balls we can get

E(ω1) − E0(ω2) ≈ 4E(ω1) − (ω2 − ω1)
dE0

dω

∣

∣

∣

∣

ω=ω1

≈ 4E(ω1) − ω14Q(ω1) = −I(ω1) > 0,

where we have used (8). Thus, at least for small α(ω), for any charge Q > 0 the energy of a
gauged Q-ball is larger than the energy of the corresponding nongauged Q-ball with the same
charge.

In [9] one can find explicit examples demonstrating how the presented technique can be used
for calculations.
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