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Abstract

The S-channel unitarity of high energy scattering amplitudes in QCD is related to di-
agrams with an arbitrary number of reggeized gluons. In the leading order the equations
for the multi-gluon composite states are integrable at large Nc. Moreover, in the N = 4
SUSY the intercept of the BFKL pomeron is constructed at the strong coupling. The non-
Fredholm properties of the integral kernels for the color singlet and octet states allow to
find their eigenvalues at large anomalous dimensions. The Green function for the BFKL
equation in QCD is expressed in terms of non-perturbative phases of eigenfunctions. The
spectrum of Pomerons is calculated in various models for the large distance dynamics.

1 Gluon reggeization and Pomeron in QCD

A leading contribution to the elastic cross-section at large energies
√
s appears from the particle

scattering at the fixed momentum transfer |q| =
√
−t. In this region it is convenient to use

the t-channel partial wave representation for the scattering amplitude in the form of the Mellin
transformation

Ap(s, t) = s

∫ a+i∞

a−i∞

dω

2πi
((−s)ω − psω) fpω(t) , ω = j − 1 , (1)

where p = ±1 is the signature of the corresponding contribution. If the leading singularity of the
partial wave f pω(t) is a pole, the amplitude has the so-called Regge behavior [1]. The exchanges
of several Regge poles generate the Mandelstam singularities of f pω(t) in the ω-plane [2, 3, 4].

To describe an approximately constant behavior of the total cross-sections σ a special j-plane
singularity - Pomeron with vacuum quantum numbers is introduced

σ =
1

s
=A(s.0) , A(s, t) ≈ is s∆−α′

P
q2 , (2)

where the intercept ∆ and slope α′
P of its trajectory should be rather small.

In the leading logarithmic approximation (LLA), where αs ln s ∼ 1 and αs = g2s
4π � 1, the

Born scattering amplitude in QCD is multiplied by the Regge factor

MA′B′

AB (s, t) = MA′B′

AB (s, t)|Born sω(t) , (3)

where the gluon Regge trajectory is given below

ω(−|q|2) = −αsNc

4π2

∫
d2k

|q|2
|k|2|q − k|2 ≈ −αsNc

2π
ln

|q2|
λ2

. (4)
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The most essential contribution to the total cross-section appears from production of gluons
in multi-Regge kinematics at their large pair energies

√
sk and fixed kr⊥ corresponding to

comparatively small momentum transfers qi. The production amplitude has the factorized
multi-Regge form with effective reggeon-reggeon-gluon vertices [5]

The knowledge of production amplitudes M2→2+n gives a possibility to construct the total
cross-section and the scattering amplitude with color singlet quantum numbers in the crossing
channel. This amplitude can be expressed in terms of the Pomeron wave function Ψ satisfying
the BFKL equation in LLA [5]

EΨ(~ρ1, ~ρ2) = H12 Ψ(~ρ1, ~ρ2) , σt ∼ s∆ , ∆ = −αsNc

2π
E0 , (5)

where E0 is the ground stte energy. The operator H12 is the BFKL Hamiltonian and ∆ is the
Pomeron intercept. In the impact parameter representation the hamiltonian can be written as
follows [6]

H12 =
1

p1p∗2
(ln |ρ12|2)p1p

∗
2 +

1

p∗1p2
(ln |ρ12|2)p∗1p2 + ln |p1p2|2 − 4ψ(1) , (6)

where we introduced the complex notations

ρ12 = ρ1 − ρ2 , ρr = xr + iyr , pr = i
∂

∂ρr
, p∗r = i

∂

∂ρ∗r
. (7)

The above Schrödinger equation is invariant under the group of the Möbius transformations [7]

ρk →
aρk + b

cρk + d
. (8)

As a result, the eigenfunctions and eigenvalues of H12 are classified by the conformal weights

m = γ + n/2 , m̃ = γ − n/2 , γ =
1

2
+ iν (9)

depending on the anomalous dimension γ of twist-2 operators and the integer conformal spin
n. Further, the Pomeron wave function is presented in the form [7]

Ψ(~ρ1, ~ρ2; ~ρ0) =

(
ρ12

ρ10ρ20

)m ( ρ∗12
ρ∗10ρ

∗
20

) em

. (10)

Respectively, the hamiltonian has the property of the holomorphic separability and the corre-
sponding holomorphic energies are expressed in terms of the function ψ(x) = (ln Γ(x)) ′

E(m, m̃) = ε(m) + ε(m̃) = 4Reψ

(
γ +

|n|
2

)
− 4ψ(1) . (11)

The Pomeron intercept in LLA, obtained at m = m̃ = 1/2, is positive: ∆ = 4 αNc

π ln 2, which
is not compatible with the s-channel unitarity. We should consider the diagrams with the
multi-Reggeon exchanges. The equations for composite states of several reggeized gluons are
integrable in the multi-color limit [8, 9].

Generally the BFKL approach can be formulated in terms of an effective field theory for
the reggeized gluons similar to the Gribov Pomeron calculus. The gluon trajectory and various
reggeon couplings in upper orders of perturbation theory can be calculated from the effective
action [10] written for a cluster of gluons and quarks interacting with the reggeized gluons
and having their rapidities y in some interval η � ln s. The Feynman rules for this action are
derived in ref. [11]. The effective action approach gives a possibility to construct various reggeon
vertices needed to calculate next-to-leading order (NLO) corrections to the BFKL kernel in the
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color singlet [12, 13] and adjoint [14, 15] representations. The hamiltonian for the composite
states of the reggeized gluons in the adjoint representation for the multi-color Yang-Mills theory
in LLA coincides with the hamiltonian of the integrable open spin chain [16].

The NLO contributions to the BFKL kernel in QCD were calculated in ref. [12]. In the case
of the N = 4 extended super-symmetric gauge theory the two loop result for its eigenvalues

ω =
g2Nc

4π2
χ(n, γ) +

1

4

(
g2Nc

4π2

)2

∆(n, γ) , χ(n, γ) = 2ψ(1) − 2<ψ(γ + |n|/2) (12)

has the property of the hermitian separability [13]. All expressions entering in ∆(n, γ) contain
only the special functions with the maximal transcendentality [17]. The maximal transcen-
dentality property in N = 4 SUSY is valid in each order of perturbation theory also for the
anomalous dimension γ(j) of the twist 2 operators [17], which allowed to calculate them up to
the fifth order [18, 19, 20]. The singular behavior of γ(j) at j → 1, obtained from the BFKL
eigenvalue j − 1 = ω(ν) with the substitution iν → γ(j) − j/2 in Ref. [17], is in an agreement
with its direct calculation with the use of the integrability of the theory.

Note, that according to Maldacena the N = 4 four-dimensional conformal field theory is
equivalent to the super-strings living on the anti-de-Sitter 10-dimensional space [21, 22, 23]. As
a result, the Pomeron in this model is dual to the reggeized graviton in the anti-de-Sitter space.
Because the anomalous dimension of twist-2 operators at large coupling constants is known,
one can find the Pomeron intercept in the strong coupling limit [18, 24, 25]

j = 2 − 2√
λ
− 1

λ
+

1

4λ−3/2
+

2 + 6ζ3
λ2

+ ... , λ = g2Nc . (13)

The slope of the anomalous dimension at j = 2 related to the Pomeron intercept was calculated
up to the fifth order of perturbation theory [18, 20]. Moreover, Basso expressed it explicitly in
terms of the Bessel functions.

The duality between the BFKL Pomeron and reggeized graviton means, that the Gribov
Pomeron calculus can be formulated in the framework of the approach based on an effective
theory for the reggeized gravitons derived in Ref. [26]. Further, the graviton-graviton scattering
amplitude at high energies in the double-logarithmic approximation was calculated for the usual
gravity and its supersymmetric generalizations [27].

2 Multi-gluon production in N = 4 SUSY

Several years ago Z. Bern, L. Dixon and V. Smirnov suggested an explicit expression for multi-
gluon production amplitude inN = 4 SUSY at Nc → ∞ with the maximal helicity violation [28].
It turned out, that their assumption is violated already in two loops [29]. The reason is that the
BDS amplitude does not satisfy the Steinmann constraint about the absence of simultaneous
singularities in overlapping channels [30]

∆sr∆sr+1
M2→2+n = 0 . (14)

Moreover, the BDS expression does not contain the Mandelstam cut contributions [31]. These
terms appear in the planar amplitudes at some physical regions starting from 6 external legs [32].
The correct amplitude differs from the BDS result by a factor - the remainder function R. This
function should be conformal invariant in the momentum space [33]. In LLA the factor R can be
calculated in the multi-Regge kinematics from the BFKL and BKP equations for gluon states in
the adjoint representation and their integral kernels are proportional to local hamiltonians of an
open integrable spin chain [16]. Let us consider the analytic properties of the gluon production
amplitudes in N = 4 SUSY at the multi-Regge kinematics. For 5- and 6-point amplitudes such
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study was done in Ref. [34]. In an accordance with the Steinmann constraint for one gluon
production the planar amplitude has the representation (cf. [36])

MBDS
2→3

Γ(t1)Γ(t2)|Γa|
= caR(−s̃)j2(−s1)j1−j2 + caL(−s̃)j1(−s2)j2−j1 , s̃ = s|ka⊥|2 , |ka⊥|2 = s1s2/s , (15)

where Γ(tr) are reggeon residues, caR and caL are two real vertices for the gluon a with the
transverse momentum ka⊥ produced from the reggeized gluon [29]

caR =
sinπω1a

sinπω12
, caL =

sinπω2a

sinπω21
(16)

and ωa is the phase of the complex production vertex [29]

Γa(ln |ka⊥|2 − iπ) = |Γa| eiπωa . (17)

In a contradiction with the BDS assumption for the production of two particles a and b the
expression for the multi-Regge amplitude in a planar approximation should contain five terms
fixed from the factorization relations for the Regge poles [36].

To formulate the Steinmann relations in a general case it is needed to introduce the signa-
tures τr = ±1 for the reggeons in tr-channels. Then for the planar case the generating function
for production amplitudes in all physical regions, related by twists in the corresponding t-channel
lines, can be written as follows

Aτ1...τn2→n+1 = A+

n∑

r=1

τr Ar +
∑

r1<r2

τr1τr2 Ar1r2 + ...+ τ1τ2...τnA1...n . (18)

The Weis expression for this function has the following factorized form [36]

Aτ1...τn2→n+1

sΓ(t1)Γ(t2)|Γa||Γb|...
= |s1|ω1ξ1V

1,2|s2|ω2ξ2V
2,3...V n−1,n|sn|ωnξn (19)

where

ξr = e−iπωr − τr , ξ12 = e−iπω12 + τ1τ2 , V
1,2 =

ξ12
ξ1
cR +

ξ21
ξ2
cL . (20)

In particular, for the transition 2 → 4 we obtain the following contributions in two physical
regions, where the BDS expression is not correct,

Aτ1...τ32→4

s|s1|ω1 |s2|ω2 |s3|ω3Γ(t1)Γ(t2)|Γa||Γb|
= ...+

(
τ1τ3 e

−iπω2 + τ1τ2τ3
)
A+ ... . (21)

Here

A =
2 cos πω2 sinπωa sinπωb

i sinπω2
+ i sinπ(ωa + ωb) + cos πωab (22)

contains the pole 1/ sin πω2 incompatible with perturbation theory. However just in these
physical regions there is a contribution of the Mandelstam cuts [29]. Moreover for example
at s, s2 > 0, s1, s3 < 0 the analytic structure of the cut contribution allows to redefine the
Regge pole term by subtracting two first terms from A and including them in the redefined
cut contribution [34]. In such a way we obtain the following representation for the remainder
function [34, 14]

Reiπδ = cos πωab + i
a

2

∞∑

n=−∞

(−1)neiφn
∫ ∞

−∞

|w|2iνdν
ν2 + n2

4

Φ(ν, n)

(( −1√
u2u3

)ω(ν,n)

− 1

)
. (23)
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Here the phases δ and ωab are expressed in terms of the cusp anomalous dimension

γK = 4a− 4ζ(2) a2 +
44

5
ζ2(2) a3 + ... , a =

g2Nc

8π2
, (24)

known in all orders of perturbation theory [18, 35]. Further, the variables w and φ can be
written in terms of the anharmonic ratios in the momentum space [37]

u1 =
ss2

s012s123
, u2 =

s1t3
s012t2

, u3 =
s3t1
s123t2

. (25)

The impact factor Φ and the BFKL eigenvalue ω(ν, n) are known in two loops [37, 32, 14]. The
analogous dispersion relations are obtained for the 7-point amplitude in all physical regions
having the Mandelstam cut contributions [38].

3 Non-Fredholm properties of the BFKL kernel in N = 4 SUSY

The Fredholm theory of the integral equations of the type

λnfn(t) =

∫
dt′K(t, t′) fn(t

′) (26)

with the symmetric kernel K∗(t′, t) = K(t, t′) allows to formulate a simple criterium for the
absence of the continuous spectrum for eigenvalues λ. This criterium is the convergency of the
integral

||K||2 ≡
∫
dt

∫
dt′ |K(t, t′)|2 <∞ . (27)

It is related to the fact, that one can express the norm of K in terms of its eigenvalues

||K||2 =
∑

n

|λn|2 . (28)

For the case of the BFKL equation in LLA the integral for ||K||2 is divergent at large and small
t = ln k2, which is related to the scale invariance at this approximation. But there is also a
divergency of this expression at small t− t′ and fixed t. This divergency is universal and takes
place beyond perturbation theory in all non-abelian gauge models. The reason for it is the
presence of the gluon Regge trajectories in the BFKL kernel

∆K = δ2(k − k′)
(
ω(~k) + ω(~q − k)

)
. (29)

Generally the divergency ||K||2 ∼ δ2(0) leads to a continuous spectrum of eigenvalues of the
BFKL kernel at negative ω. But in the case of the N = 4 SUSY this property of K allows
to predict the dependence of its eigenvalues from the conformal weights m and m̃ at large
negative ω at all orders of the perturbation theory. Indeed, the divergent term of the gluon
Regge trajectory in this model is proportional to the cusp anomalous dimensions γK

ω(k) = −1

4
γK(a) ln

k2

λ2
, (30)

where λ is an infrared cut-off. The BFKL kernel for the Pomeron in N = 4 SUSY contains apart
from two Regge trajectories also the contribution from the particle production which should
compensate the divergency at λ→ 0 in its integration with a smooth function

K(~k,~k′) ≈ 1

2
γK

(
−δ2(k − k′) ln

1

λ2
+

1/π

|k − k′|2 + λ2

)
. (31)
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Thus, the eigenvalue of the kernel for Pomeron at large m and m̃ should have the following
asymptotic form in all orders of perturbation theory [39]

lim
m, em→∞

ωP (m, m̃) =

∫
d2k′

|k′|2 K(~k,~k′)

(
k′

k

)m(k′
k

) em

= −1

2
γK ln |mm̃| (32)

This prediction is valid in first two loops (see (12)). In an analogous way, the eigenvalue of the
BFKL kernel for the composite states in the adjoint representation after subtraction from it
the gluon Regge trajectory ω(q2) is also proportional to γK

lim
m, em→∞

ωA(m, m̃) = −1

4
γK ln |mm̃| (33)

in an agreement with the results found in leading and next-to-leading orders [14]. The above
asymptotic expressions for the BFKL eigenvalues in N = 4 SUSY were obtained also in Ref. [40]
with the use of explicit expressions for two gluon production amplitudes in the collinear limit.

4 Green function for the BFKL equation with running αs

In the next-to-leading approximation the BFKL equation in QCD contains running coupling
constant effects. Generally this fact improves the properties of the kernel at large transverse
momenta |k⊥|, but as a result the coupling constant rapidly grows near k2

⊥ = Λ2, where
Λ ≈ 200Mev is the QCD parameter. To calculate the spectrum of Pomerons in this case
it is necessary to take into account the non-perturbative effects at least as a boundary con-
dition for wave functions at small k2

⊥ [7, 41]. For this purpose a simple method based on a
generalization of the DGLAP-type evolution equation obtained from the BFKL kernel with
upper order corrections was developed in Ref.[42]. We use below another approach using for
illustration a simplified model, in which the kernel is taken in LLA with the running coupling
constant calculated in the same approximation

ωfω(t) =
1

β0 t
χ(ν̂) fω(t) , (34)

where

t = ln
k2
⊥

Λ2
, ν̂ = −i ∂t , β0 =

11

12
− nf

18
(35)

and the BFKL hamiltonian is hermitian with the wave function normalized as follows

||f ||2 =

∫ ∞

0
t dt |f(t)|2 . (36)

The characteristic function χ(ν) for n = 0 is given below

χ(ν) = 2ψ(1) − 2<ψ(
1

2
+ iν) . (37)

The eigenfunction of the BFKL kernel with the running coupling is well known

fω(t) =

∫ ∞

−∞
dν eitν gω(ν) , gω(ν) =

(
Γ(1

2 + iν)

Γ(1
2 − iν)

e−2iνψ(1)

) 1

β0ω

, (38)

where the contour of integration over ν is chosen to be along the real axes because the corre-
sponding wave function with ω > 0 falls down at t→ ∞.

The Green function satisfies the equation
(
ω − 1

β0 t
χ(ν̂) fω(t)

)
Gω(t, t′) = δ(t− t′) . (39)
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Its particular solution is given below (cf. the corresponding semiclassical expression in Ref. [42])

G0
ω(t, t′) = − it

′

ω

∫ ∞

−∞

dν

2π
eitν gω(ν)

∫ ∞

−∞

dν ′

2
ε(ν + ν ′) eit

′ν′ gω(ν ′) , (40)

where ε(x) = x/|x|. Note, that G0
ω has the following completeness property

lim
ω→∞

G0
ω(t, t′) =

1

ω
δ(t − t′) . (41)

It provides the correct initial condition at y = 0

G0(0; t, t′) = δ(t− t′) (42)

for the operator

G0(y; t, t′) =

∫ a+i∞

a−i∞

dω

2πi
e−ωy G0

ω(t, t′) , (43)

describing the BFKL evolution in the relative rapidity y = ln s/s0.
The general solution for the Green function contains a contribution proportional to the

solution of the homogeneous BFKL equation

Gω(t, t′) = G0
ω(t, t′) +

t′

4πω
c(ω) fω(t) fω(t′) , (44)

where the coefficient c(ω) should be chosen from the condition that the Green function satisfies
the physical boundary condition at small t and t′. We assume, that the evolution of the wave
function in a semi-classical approximation from the confinement region to large t is described
by a non-perturbative phase δnpω (t) [7, 41]. The perturbative phase δpω(t) for its evolution from
large to small t can be calculated with the use of the saddle point approximation for the above
integral representation (38) of fω(t)

lim
tc−t→∞

fω(t) ≈
√

2π
(
χ′(−ν̃ω)

)−1/2
sin δpω(t) , (45)

where

δpω(t) =
π

4
− tν̃ω(t) − 1

β0ω

(
= ln

Γ(1/2 + iν̃ω(t))

Γ(1/2 − iν̃ω(t))
− 2ψ(1)ν̃ω(t)

)
. (46)

The quantity ν̃ω(t) > 0 is the position of the saddle point satisfying the equation

ω β0t = χ(ν̃ω(t)) . (47)

Accordingly we should fix the coefficient in the additional contribution ∆Gω as follows

c(ω) = cot φω , φω = δnpω (t) − δpω(t) , (48)

where φω does not depend on t and is similar to the phase of the S-matrix for the one-dimensional
scattering problem in quantum mechanics. It contains an important information about the
spectrum of the system. Indeed, the physical Green function has the poles at

φωk
= −k π , (49)

where k is an integer number. As a result, the Green function satisfies the dispersion represen-
tation (cf. Ref. [42])

√
t

t′
Gω(t, t′) =

∞∑

k=1

Fk(t)Fk(t
′)

ω − ωk
, Fk(t) =

√
t

4πωkφ′ωk

fωk
(t) ,

∞∑

k=1

Fk(t)Fk(t
′) = δ(t− t′) . (50)
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If we introduce the non-zero gluon mass m using the Higgs mechanism to model non-
perturbative effects in QCD, the Pomeron wave function should be taken at large k2 as follows
(see Ref. [43])

fω ∼ sin

(
−ν ln

(
6.456

k2

m2

))
. (51)

This function does not contain any additional phase depending on ν and vanishes at k2 =
m2/6.456. At the lattice approach to QCD the gluon propagator can be described by the Higgs
model with the vector boson mass m ≈ 540Mev [44]. Therefore for Λs ≈ 200Mev, we have
m2/6.456 ≈ Λ2

s. The above relations allow us to simplify significantly the boundary condition
for the BFKL function (38) imposing the constraint

fω(0) = 0 . (52)

As a result, the Pomeron spectrum in the semi-classical approximation (cf. [7])

ωk ≈
0.40862

k − 1
4

, k = 1, 2, ... (53)

is in a good agreement with the exact spectrum obtained from relation fωk
(0) = 0 for the

explicit wave function fω(t).
The Pomeron spectrum in the Higgs model is similar in the form to that obtained from the

fit of experimental data [41]. Below we consider another model for the BFKL equation at small
momenta.

5 Green function at a non-zero momentum transfer

In the case of an arbitrary momentum transfer q 6= 0 it is convenient to use a mixed represen-
tation for the Pomeron wave function

Ψ(~ρ, ~q) =

∫
d2Rei~q

~R Ψ(~ρ1, ~ρ2) , ~ρ1 = ~R+
~ρ

2
, ~ρ2 = ~R− ~ρ

2
, q = p1 + p2 . (54)

Due to the Möbius invariance of the BFKL kernel in LLA its eigenfunctions have the simple
form [7]

Ψν,n(~ρ1, ~ρ2; ~ρ0) =

(
ρ12

ρ10ρ20

)m( ρ∗12
ρ∗10ρ

∗
20

)em

, m =
1

2
+ iν +

n

2
, m̃ =

1

2
+ iν − n

2
(55)

and the corresponding eigenvalues are

ω(ν, n) =
g2Nc

4π2
χ(ν, n) , χ(ν, n) = 2ψ(1) − 2<ψ(

1

2
+ iν +

|n|
2

) . (56)

The conformal invariance is broken in the next-to-leading approximation. Providing, that
|ρ|−1 � |q| � Λs, the argument of the coupling constant is proportional to |ρ|−2 and therefore
t ≈ − ln(|ρ|2Λ2

s). For such small ρ the virtuality of reggeized gluons |k⊥|2 are much larger than
q2⊥ and therefore one can reduce the BFKL equation to the simple case q = 0. For general con-
formal spins n 6= 0 corresponding to higher twist contributions we obtain the following solution
omitting the factor containing a linear combination of the azimuthal angle phases exp(±inθ)
(cf. (38))

fω(t, n) =

∫ ∞

−∞
dν eitν gω(ν, n) , gω(ν, n) =

(
Γ(1

2 + iν + |n|
2 )

Γ(1
2 − iν + |n|

2 )
e−2iνψ(1)

) 1

β0ω

. (57)
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The perturbative phase δpω(t, n) of the wave function below the turning point tc can be calculated
with the use of the saddle point approximation for this integral

lim
tc−t→∞

fω(t, n) ≈
√

2π
∣∣χ′(ν̃ω(t, n))

∣∣−1/2
sin δpω(t, n) , (58)

where

δpω(t, n) =
π

4
− tν̃ω(t, n) − 1

β0ω

(
= ln

Γ(1/2 + iν̃ω(t, n) + |n|/2)
Γ(1/2 − iν̃ω(t, n) + |n|/2) − 2ψ(1)ν̃ω(t, n)

)
. (59)

The quantity ν̃ω(t, n) is the position of the saddle point satisfying the equation

ω β0t = χ(ν̃ω(t, n), n) . (60)

Note, that the phase δpω(t, n) contains the pole 1/ω, which leads to the Pomeron spectrum of
the type of after quantization (65).

A particular solution of the BFKL equation for the Green function in the region of small ρ
and ρ′ is given below (cf. eq. (40))

G0
ω(t, θ; t′, θ′) = − it

′

ω

∞∑

n=−∞

ein(θ−θ′)

2π

∫ ∞

−∞

dν

2π
eitν gω(ν, n)

∫ ∞

−∞

dν ′

2
ε(ν + ν ′) eit

′ν′ gω(ν ′, n) , (61)

where θ and θ′ are azimuthal angles of vectors ~ρ and ~ρ′. It satisfies the relation

lim
ω→∞

G0
ω(t, θ; t′, θ′) =

1

ω
δ(t− t′) δ(θ − θ′) , (62)

leading to a correct asymptotic behavior for the evolution operator at the small relative rapidity
y.

The physical Green function having the oscillatory behavior at tc−t→ ∞ (or at tc−t′ → ∞)
with the phase compatible to the boundary condition at small t (t′) is given by the expression

Gω(t, θ; t′, θ′) = G0
ω(t, θ; t′, θ′) +

t′

4πω

∞∑

n=−∞

ein(θ−θ′)

2π
cotφω(n) fω(t, n) fω(t′, n) , (63)

where the parameter φω(n) is equal to the difference of the non-perturbative and perturbative
phases of the wave functions for various values of n

φω(n) = δnpω (t, n) − δpω(t, n) . (64)

The Green function contains the poles at ω = ωk(n) being solutions of the equation.

φωk(n)(n) = k π (65)

at integer k and therefore it can be presented in the form (cf. eq. (50))
√
t′

t
Gω(t, θ; t′, θ′) =

∞∑

n=−∞

ein(θ−θ′)

2π

∞∑

k=1

Fk(t, n)Fk(t
′, n)

ω − ωk(n)
, (66)

where

Fk(t, n) =

√
t φ′ωk(n)

4πωk(n)
fωk(n)(t, n) . (67)

Let us consider the region q2 � Λ2
s, where we can calculate φω(n) in the perturbation theory

due to the asymptotic freedom. The asymptotic behavior of the eigenfunction Ψ(~ρ, ~q) (54) at
small |ρ||q| � 1 corresponding to the Möbius invariant solution (55) is given below [7]

lim
|ρ|→0

Ψν,n(~ρ, ~q) ∼ cos (γν,n(~ρ, ~q) + βn(~ρ, ~q)) , (68)
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where

γν,n(~ρ, ~q) = 2ν ln
|qρ|
4

+
1

2i
ln

Γ(1 − iν + n
2 )Γ(1 − iν − n

2 )

Γ(1 + iν + n
2 )Γ(1 + iν − n

2 )
, βn(~ρ, ~q) =

n

2i
ln(

−ρq∗
ρ∗q

). (69)

We should consider two functions Ψ±
ν,n being respectively even (+) and odd (−) under the

substitution n→ −n to obtain the factorized expressions

lim
|ρ|→0

Ψ+
ν,n(~ρ, ~q) ∼ cos γν,n(~ρ, ~q) cos βn(~ρ, ~q) , lim

|ρ|→0
Ψ−
ν,n(~ρ, ~q) ∼ sin γν,n(~ρ, ~q) sinβn(~ρ, ~q) . (70)

Thus, by matching these results at t = ln |q|2/Λ2
s with eigenfunction (57) multiplied by corre-

sponding factors depending on βn(~ρ, ~q) we obtain the following equations describing the spec-
trum of the Regge trajectories ω = ω±

k (n, |q|2) (cf. Ref. [7])

π

2
− γeνω ,n(~ρ, ~q) − δp

ω+

k
(n,|q|2)

(t, n) = kπ , γeνω,n(~ρ, ~q) − δp
ω−

k
(n,|q|2)

(t, n) = kπ. (71)

Here ν̃ω is determined from eq. (60 ).

6 BFKL Pomeron at a thermostat

One of possible models for the non-perturbative BFKL dynamics is related to the introduction
of a t-channel temperature T 6= 0 [45]. It is natural to expect, that the Pomeron melts in such
a thermostat because the confining potential existing between two gluons disappears at large
T . But the situation turns out to be more complicated. Namely, in Ref. [46] it was discovered,
that sometimes the non-zero temperature causes an opposite effect. Namely, the positions of the
Regge poles ω(t) can increase with the temperature [46]. The explanation of this phenomenon
is related to the fact, that the temperature effects for the correlation functions in the t-channel
are introduced by imposing the periodicity of them in the euclidian time. After their analytic
continuation to the s-channel this constraint leads to the periodicity of the Pomeron wave
functions in one of two transverse gluon coordinates ~ρ. If this compactification appears in the
direction orthogonal to the momentum transfer ~q, topologically the impact parameter space ~ρ
becomes a cylinder with its axes situated along the line connecting two gluons. In this case the
color electric field is compressed to a string between the gluons, which leads to a confining force
increasing the Pomeron intercept [46].

Let us consider this phenomenon in more details. According to Ref. [45] the wave function of
the Pomeron at the thermostat in LLA can be obtained from expression (55) by the conformal
transformation of gluon coordinates

ρ→ exp(2πT ρ) , ρ∗ → exp(2πT ρ∗) , (72)

where T is the t-channel temperature. In complex coordinates the modified expression is peri-
odic in =ρ and its region of definition is restricted to the strip

0 < =ρ < T−1 . (73)

With the use of the mixed representation (54) in the limit 1/|ρ| � |q| one can obtain the asymp-
totic result similar to (68) at T = 0 [46]. After its symmetrization (or anti-symmetrization)
under the transformation n→ −n we have (cf. (70) for T = 0)

lim
|ρ|→0

Ψ+
ν,n(~ρ, ~q) ∼ cos γTν,n(~ρ, ~q) cos βTn (~ρ, ~q) , lim

|ρ|→0
Ψ−
ν,n(~ρ, ~q) ∼ sin γTν,n(~ρ, ~q) sinβTn (~ρ, ~q) , (74)

where

γTν,n(~ρ, ~q) = 2ν ln
2πT |ρ|

4
+ γ~q,Tν,n , β

T
n (~ρ, ~q) =

n

2i
ln

ρ

ρ∗
(75)
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and

γ~q,Tν,n =
1

2i
ln

Γ(1 − iν + n
2 )Γ(1 − iν − n

2 )Γ(iν + 1+n
2 + i q

2πT )Γ(iν + 1−n
2 − i q

∗

2πT )

Γ(1 + iν + n
2 )Γ(1 + iν − n

2 )Γ(−iν + 1−n
2 + i q

2πT )Γ(−iν + 1+n
2 − i q

∗

2πT )
. (76)

Assuming that qy = 0 and matching these results at t = ln |q|2/Λ2
s with eigenfunction (57)

multiplied by corresponding factors depending on βTn (~ρ, ~q) we obtain the following equations
describing the spectrum of the Regge trajectories ω = ω±

k (n, |q|2)
π

2
− γT

eνω ,n(~ρ, ~q) − δp
ω+

k
(n,|q|2)

(t, n) = kπ , γT
eνω,n(~ρ, ~q) − δp

ω−

k
(n,|q|2)

(t, n) = kπ. (77)

Here ν̃ω is calculated from eq.(60 ). One can verify, that the leading Regge trajectory ω(q2, T )
at n = 0 increases with temperature at some interval of T [46]. In QCD the parameter T −1

should be of the order of Λ−1
s . It plays role of the radius of a bag containing two reggeized

gluons. The bag is surrounded by the physical vacuum in which the gluons and their color
electric field can not penetrate due to the dual Meissner effect. It is assumed usually, that the
physical vacuum arises as a result of the monopols condensation. For comparatively large |q|
the cylinder-type configuration for the bag of the bare vacuum in the physical vacuum looks
natural and leads to the confining potential between gluons. But with a decrease of |q| one can
expect a similar periodicity of the Pomeron wave functions also in the direction along ~q leading
to a torus-type configuration of the impact parameter space.
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