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Abstract

We construct in all loops a renormalization prescription giving the NSVZ scheme (in
which the β-function coincides with the NSVZ expression relating the β-function with the
anomalous dimension of the matter superfields) for Abelian supersymmetric theories reg-
ularized by higher derivatives. The NSVZ scheme for the renormalization group functions
defined in terms of the renormalized coupling constant is obtained in this case by imposing
some simple boundary conditions on the renormalization constants. The renormalization
group functions defined in terms of the bare coupling constant satisfy the NSVZ relation for
an arbitrary renormalization prescription, if the higher derivatives are used for regulariza-
tion.

1 Introduction

The NSVZ β-function [1, 2, 3, 4] is an equation which relates the β-function of N = 1
supersymmetric theories to the anomalous dimensions of the matter superfields:

β(α) = −
α2
(
3C2 − T (R) + C(R)i

jγj
i(α)/r

)

2π(1 − C2α/2π)
, (1)

where

tr (T ATB) ≡ T (R) δAB ; (T A)i
k(T A)k

j ≡ C(R)i
j;

fACDfBCD ≡ C2δ
AB ; r ≡ δAA. (2)

The NSVZ β-function was constructed using some general arguments: structure of instanton
contributions [1, 3] (see Ref. [5] for a recent review), structure of the anomaly supermultiplet
[2, 4, 6], non-renormalization of the topological term [7].

Here we pay especial attention to the Abelian case, namely, to the N = 1 supersymmetric
electrodynamics (SQED) with Nf flavors. In the massless case this theory is described by the
action
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S =
1

4e2
0

Re

∫
d4x d2θ W aWa +

Nf∑

i=α

1

4

∫
d4x d4θ

(
φ∗

αe2V φα + φ̃∗
αe−2V φ̃α

)
, (3)

where V is a real gauge superfield, φα and φ̃α with α = 1, . . . , Nf are chiral matter superfields,
and (in the Abelian case) Wa = D̄2DaV/4. For this theory

C2 = 0; C(R) = I; T (R) = 2Nf r = 1, (4)

where I is the 2Nf × 2Nf unit matrix. This implies that for N = 1 SQED with Nf flavors the
NSVZ β-function has the form [8, 9]

β(α) =
α2Nf

π

(
1 − γ(α)

)
. (5)

The NSVZ β-function (obtained from the formal arguments) can be compared with the
results of explicit calculations in the lowest orders, if a certain regularization and a certain
renormalization prescription are chosen. Although the dimensional technique is the most pop-
ular regularization, one encounters problems applying it to supersymmetric theories [10]. The
dimensional regularization [11, 12, 13, 14] breaks the supersymmetry [15] and is not convenient
for calculations in supersymmetric theories. Its modification, called the dimensional reduction
[16], is either mathematically inconsistent [17], or is not manifestly supersymmetric [18] that
can lead to supersymmetry breaking in higher loops [19, 20]. However, using the dimensional
reduction and the DR-scheme the β-function for general N = 1 supersymmetric theories was
calculated up to the four-loop approximation [21, 22, 23, 24], see [25] for a recent review. The
results agree with the NSVZ β-function only in the one- and two-loop approximations. In
the higher loops it is necessary to make a special tuning of the coupling constant [22, 26].
Some other regularization techniques are mostly used in the one- and two-loop approximations
[27, 28], where the problems related to the scheme dependence are not essential.

It appears that a very convenient regularization for supersymmetric theories is the higher
covariant derivative regularization [29, 30]. It is a consistent regularization, which does not
break supersymmetry in the supersymmetric case [31, 32]. This regularization can be also
constructed for N = 2 supersymmetric theories [33, 34]. In order to regularize a theory by
higher derivatives it is necessary to add a term with higher degrees of covariant derivatives.
Then divergences remain only in the one-loop approximation [35]. These remaining divergences
are regularized by inserting the Pauli–Villars determinants [36] into the generating functional.

Quantum corrections calculated with the higher derivative regularization in N = 1 super-
symmetric theories have an interesting feature: integrals giving the β-function defined in terms
of the bare coupling constant are integrals of (double) total derivatives [37, 38]. One of these
integrals can be calculated analytically giving the NSVZ relation. In the Abelian case this was
proved exactly in all loops [39, 40].

However, the ordinary renormalization group (RG) functions defined in terms of the renor-
malized coupling constant [41] are scheme dependent. For these RG functions the NSVZ relation
appears only with a certain renormalization prescription, which is called the NSVZ scheme. In
the case of using the dimensional reduction the NSVZ scheme can be constructed by a special
choice of finite renormalization which should be made in each order. The higher derivative
regularization allows to find a simple prescription which gives the NSVZ scheme exactly in all
orders [42]. In this paper we describe how this can be made.

The paper is organized as follows: In section 2 we introduce the higher derivative regular-
ization for N = 1 SQED with Nf flavors. Then in section 3 we explain why the NSVZ relation
arises for the RG functions defined in terms of the bare coupling constant in the case of using
this regularization. The NSVZ scheme for the RG functions defined in terms of the renormalized
coupling constant is formulated in section 4. The result is verified by the explicit three-loop
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calculation in section 5. Scheme dependence of the NSVZ relation and its scheme-idenpendent
consequences are discussed in section 6.

2 N = 1 SQED with Nf flavors, regularized by higher deriva-

tives

In order to regularize the theory by higher derivatives it is necessary to add the higher
derivative term to the action:

Sreg =
1

4e2
0

Re

∫
d4x d2θ W aR(∂2/Λ2)Wa +

Nf∑

α=1

1

4

∫
d4x d4θ

(
φ∗

αe2V φα + φ̃∗
αe−2V φ̃α

)
, (6)

where (R(∂2/Λ2) − 1) is a regulator. For example, one can choose R = 1 + ∂2n/Λ2n.
Adding the higher derivative term allows to remove all divergences beyond the one-loop

approximation. In order to remove one-loop divergencies we insert in the generating functional
the Pauli–Villars determinants [36]:

Z[J,Ω] =

∫
Dµ

∏

I

(
det PV (V,MI)

)NfcI

exp
{
iSreg + iSgf + SSources

}
, (7)

where the coefficients cI are restricted by the following constrains:

∑

I

cI = 1;
∑

I

cIM
2
I = 0 (8)

needed for canceling the remaining one-loop divergences. It is essential that the Pauli–Villars
masses are proportional to the parameter Λ in the higher derivative term, the ratios being
independent on the bare coupling constant:

MI = aIΛ, aI 6= aI(e0). (9)

A part of the effective action corresponding to the two-point Green functions can be written in
the form

Γ(2) =

∫
d4p

(2π)4
d4θ

(
−

1

16π
V (−p, θ) ∂2Π1/2V (p, θ) d−1(α0,Λ/p)

+
1

4

Nf∑

α=1

(
φ∗

α(−p, θ)φα(p, θ) + φ̃∗
α(−p, θ)φ̃α(p, θ)

)
G(α0,Λ/p)

)
, (10)

where ∂2Π1/2 denotes a supersymmetric transversal projection operator. After calculating
these functions in a certain order, we construct the renormalized coupling constant α(α0,Λ/µ),
requiring finiteness of the inverse invariant charge d−1(α0(α,Λ/µ),Λ/p) in the limit Λ → ∞.
Then the renormalization constant Z3 is given by

1

α0
≡

Z3(α,Λ/µ)

α
. (11)

The renormalization constant Z is constructed, requiring that the renormalized two-point Green
function ZG is finite in the limit Λ → ∞:

Gren(α, µ/p) = lim
Λ→∞

Z(α,Λ/µ)G(α0,Λ/p). (12)
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3 Why the NSVZ relation is satisfied by the RG functions de-

fined in terms of the bare coupling constant

In most original papers [1, 3, 8, 9] the NSVZ β-function was constructed for the RG functions
defined in terms of the bare coupling constant

β
(
α0(α,Λ/µ)

)
≡

dα0(α,Λ/µ)

d lnΛ

∣∣∣
α=const

; γi
j
(
α0(α,Λ/µ)

)
≡ −

d lnZi
j(α,Λ/µ)

d lnΛ

∣∣∣
α=const

.

(13)
These RG functions

1. are scheme independent for a fixed regularization;
2. depend on the regularization;
3. in all loops satisfy the NSVZ relation in the case of N = 1 SQED with Nf flavors,

regularized by higher derivatives.
The independence of the renormalization prescription follows from the possibility of express-

ing them via unrenormalized Green functions, e.g.,

0 = lim
p→0

dd−1(α0,Λ/p)

d lnΛ

∣∣∣
α=const

= lim
p→0

(∂d−1(α0,Λ/p)

∂α0
β(α0) −

∂d−1(α0,Λ/p)

∂ ln p

)
, (14)

where in the last equality α0 and p are considered as independent variables. Similarly, differ-
entiating

lnG(α0,Λ/q) = lnGren(α, µ/q) − lnZ(α,Λ/µ)

+(terms vanishing in the limit q → 0) (15)

with respect to lnΛ at a fixed value of α, in the limit q → 0 we obtain

γ(α0) = lim
q→0

(∂ lnG(α0,Λ/q)

∂α0
β(α0) −

∂ lnG(α0,Λ/q)

∂ ln q

)
. (16)

Therefore, β(α0) and γ(α0) do not depend on an arbitrariness of choosing the renormalization
constants.

In the case of using the higher derivative regularization for Abelian supersymmetric theories
the RG functions defined in terms of the bare coupling constant satisfy the NSVZ relation in all
loops [39, 40]. This follows from the fact that with the higher covariant derivative regularization
loop integrals giving the β-function defined in terms of the bare coupling constant are integrals
of total derivatives [37] and even integrals of double total derivatives [38]. As a consequence,
one of the loop integrals can be calculated analytically. This gives the NSVZ relation for the
RG functions defined in terms of the bare coupling constant. It was also proved for Abelian
theories in all loops in Refs. [39, 40]:

β(α0)

α2
0

=
d

d ln Λ

(
d−1(α0,Λ/p) − α−1

0

)∣∣∣
p=0

=
Nf

π

(
1 −

d

d ln Λ
lnG(α0,Λ/q)

∣∣∣
q=0

)
=

Nf

π

(
1 − γ(α0)

)
. (17)

In the non-Abelian case the similar calculations have been done only in the two-loop approxi-
mation and reveal the same features [43, 44, 45, 46, 47].

In order to illustrate the factorization of integrals for the β-function defined in terms of the
bare coupling constant into integrals of double total derivatives we present the result of the
three-loop calculation for N = 1 SQED with Nf flavors:
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β(α0)

α2
0

= 2πNf
d

d ln Λ

{∑

I

cI

∫
d4q

(2π)4
∂

∂qµ

∂

∂qµ

ln(q2 + M2)

q2
+ 4π

∫
d4q

(2π)4
d4k

(2π)4
e2

k2R2
k

×
∂

∂qµ

∂

∂qµ

( 1

q2(k + q)2
−
∑

I

cI
1

(q2 + M2
I )((k + q)2 + M2

I )

)[
Rk

(
1 +

e2Nf

4π2
ln

Λ

µ

)

−2e2Nf

(∫
d4t

(2π)4
1

t2(k + t)2
−
∑

J

cJ

∫
d4t

(2π)4
1

(t2 + M2
J)((k + t)2 + M2

J )

)]

+4π

∫
d4q

(2π)4
d4k

(2π)4
d4l

(2π)4
e4

k2Rkl2Rl

∂

∂qµ

∂

∂qµ

{(
−

2k2

q2(q + k)2(q + l)2(q + k + l)2

+
2

q2(q + k)2(q + l)2

)
−
∑

I

cI

(
−

2(k2 + M2
I )

(q2 + M2
I )((q + k)2 + M2

I )((q + l)2 + M2
I )

×
1

((q + k + l)2 + M2
I )

+
2

(q2 + M2
I )((q + k)2 + M2

I )((q + l)2 + M2
I )

−
1

(q2 + M2
I )2

×
4M2

I

((q + k)2 + M2
I )((q + l)2 + M2

I )

)
+ O(e6)

}
. (18)

Taking these integrals of the double total derivatives we obtain the (α0)
0, (α0)

1, and (α0)
2

terms of the relation

β(α0)

α2
0

=
Nf

π

(
1 −

d

d lnΛ
lnG(α0,Λ/q)

∣∣∣
q=0

)
, (19)

where the two-loop Green function of the matter superfields is given by

G(α0,Λ/p) = 1 −

∫
d4k

(2π)4
2e2

0

k2Rk(k + p)2
+

∫
d4k

(2π)4
d4l

(2π)4
4e4

0

k2Rkl2Rl

(
1

(k + p)2(l + p)2

+
1

(l + p)2(k + l + p)2
−

(k + l + 2p)2

(k + p)2(l + p)2(k + l + p)2

)
+

∫
d4k

(2π)4
d4l

(2π)4
4e4

0Nf

k2R2
k(k + p)2

×

(
1

l2(k + l)2
−

n∑

I=1

cI
1(

l2 + M2
I

) (
(k + l)2 + M2

I

)
)

+ O(e6
0), (20)

4 The NSVZ scheme for the RG functions defined in terms of

the renormalized coupling constant

RG function defined in terms of the bare coupling constant are scheme-independent for a
fixed regularization. However, RG functions are usually defined by a different way, in terms of
the renormalized coupling constant:

β̃
(
α(α0,Λ/µ)

)
≡

dα(α0,Λ/µ)

d lnµ

∣∣∣
α0=const

; (21)

γ̃i
j
(
α(α0,Λ/µ)

)
≡

d lnZi
j(α(α0,Λ/µ),Λ/µ)

d ln µ

∣∣∣
α0=const

. (22)

These RG functions are scheme-dependent. It is possible to prove [42, 48] that they coincide
with the RG functions defined in terms of the bare coupling constant, if the boundary conditions
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Z3(α, x0) = 1; Zi
j(α, x0) = 1 (23)

are imposed on the renormalization constants, where x0 is an arbitrary fixed value of lnΛ/µ.
Really, for example, the anomalous dimension (22) can be presented as

γ̃ (α(α0, x)) = −
d lnZ (α(α0, x), x)

dx
= −

∂ lnZ(α, x)

∂α
·
∂α(α0, x)

∂x
−

∂ lnZ (α(α0, x), x)

∂x
, (24)

where the total derivative with respect to x = lnΛ/µ also acts on x inside α. Calculating these
expressions at the point x = x0 and taking into account that ∂ lnZ(α, x0)/∂α = 0 we obtain
γ̃(α0) = γ(α0). The similar equality for the β-functions can be proved in the same way.

The RG functions β̃ and γ̃ (defined in terms of the renormalized coupling constant) are
scheme-dependent. They satisfy the NSVZ relation only in a certain subtraction scheme, called
the NSVZ scheme, which is evidently fixed in all loops by the boundary conditions (23) if the
theory is regularized by higher derivatives. (This is so, because the functions β and γ satisfy
the NSVZ relation in the case of using this regularization.)

5 NSVZ and other schemes in the three-loop approximation

For Rk = 1 + k2n/Λ2n it is possible to find the expressions for the divergent parts of the
function d−1 in the three-loop approximation and of the function lnG in the two-loop approxi-
mation, and construct the corresponding renormalization constants. Instead of the expression
for Z3, it is more convenient to write the result for the renormalized coupling constant. In the
three-loop approximation it is given by

1

α0
=

1

α
−

Nf

π

(
ln

Λ

µ
+ b1

)
−

αNf

π2

(
ln

Λ

µ
+ b2

)
−

α2Nf

π3

(Nf

2
ln2 Λ

µ

− ln
Λ

µ

(
Nf

n∑

I=1

cI ln aI + Nf +
1

2
− Nfb1

)
+ b3

)
+ O(α3), (25)

where bi are arbitrary finite constants. Similarly, the renormalization constant Z (in the two-
loop approximation) for the matter superfields is given by

Z = 1 +
α

π

(
ln

Λ

µ
+ g1

)
+

α2(Nf + 1)

2π2
ln2 Λ

µ

−
α2

π2
ln

Λ

µ

(
Nf

n∑

I=1

cI lnaI − Nfb1 + Nf +
1

2
− g1

)
+

α2g2

π2
+ O(α3), (26)

where gi are other arbitrary finite constants. The subtraction scheme is fixed by fixing values
of these constants bi and gi.

The RG functions defined in terms of the bare coupling constant calculated on the base of
Eqs. (25) and (26) have the form

β(α0)

α2
0

=
Nf

π
+

α0Nf

π2
−

α2
0Nf

π3

(
Nf

n∑

I=1

cI ln aI + Nf +
1

2

)
+ O(α3

0); (27)

γ(α0) = −
α0

π
+

α2
0

π2

(
Nf

n∑

I=1

cI ln aI + Nf +
1

2

)
+ O(α3

0). (28)
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We see that these RG functions in the considered approximation do not depend on the finite
constants bi and gi (i.e. they are scheme-independent) and satisfy the NSVZ relation.

The RG functions defined in terms of the renormalized coupling constant are given by

β̃(α)

α2
=

Nf

π
+

αNf

π2
−

α2Nf

π3

(
Nf

n∑

I=1

cI lnaI + Nf +
1

2
+ Nf (b2 − b1)

)
+ O(α3); (29)

γ̃(α) = −
α

π
+

α2

π2

(
Nf +

1

2
+ Nf

n∑

I=1

cI ln aI − Nfb1 + Nfg1

)
+ O(α3) (30)

and depend on a subtraction scheme.
The NSVZ scheme (with the higher derivative regularization) is determined by the conditions

(23). For simplicity we set g1 = 0 (this constant can be excluded by a redefinition of µ). In
this case x0 = 0 and the conditions (23) give g2 = b1 = b2 = b3 = 0. Then in the considered
approximations

γ̃NSVZ(α) = −
α

π
+

α2

π2

(1

2
+ Nf

n∑

I=1

cI ln aI + Nf

)
+ O(α3) = γ(α); (31)

β̃NSVZ(α) =
α2Nf

π

(
1 +

α

π
−

α2

π2

(1

2
+ Nf

n∑

I=1

cI ln aI + Nf

)
+ O(α3)

)
= β(α). (32)

As a consequence, in this scheme the NSVZ relation is satisfied.
Let us also present the results of similar calculations in other subtraction schemes. In the

MOM scheme the results obtained with the dimensional reduction and with the higher derivative
regularization coincide and have the form

γ̃MOM(α) = −
α

π
+

α2(1 + Nf )

2π2
+ O(α3); (33)

β̃MOM(α) =
α2Nf

π

(
1 +

α

π
−

α2

2π2

(
1 + 3Nf (1 − ζ(3))

)
+ O(α3)

)
. (34)

In the DR-scheme the result of Ref. [22] (in the notation used in this paper) can be written as

γ̃DR(α) = −
α

π
+

α2(2 + 2Nf )

4π2
+ O(α3); (35)

β̃DR(α) =
α2Nf

π

(
1 +

α

π
−

α2(2 + 3Nf )

4π2
+ O(α3)

)
. (36)

From the above expressions for the RG functions we see that in the considered approximations
only terms proportional to (Nf )2α4 in the β-function and to Nfα3 in the anomalous dimension
are scheme dependent. The other terms are same in all schemes.

6 Finite renormalizations and the NSVZ relation

Different subtraction schemes can be related by finite renormalizations

α → α′(α); Z ′(α′,Λ/µ) = z(α)Z(α,Λ/µ). (37)

Under such a finite renormalization the β-function and the anomalous dimension defined in
terms of the renormalized coupling constant are changed:
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β̃′(α′) =
dα′

dα
β̃(α); γ̃′(α′) =

d ln z

dα
· β̃(α) + γ̃(α). (38)

Using these equations one can see [48] that if β̃(α) and γ̃(α) satisfy the NSVZ relation, then

β̃′(α′) =
dα′

dα
·
α2Nf

π

1 − γ̃′(α′)

1 − α2Nf (d ln z/dα)/π

∣∣∣
α=α(α′)

. (39)

Quantum corrections to the coupling constant are produced by diagrams which contain at least
one loop of the matter superfields, which is proportional to Nf . Thus, it is reasonable to make
finite renormalizations of the coupling constant of the first order in Nf :

α′(α) − α = O(Nf ); z(α) = O
(
(Nf )0

)
. (40)

This implies that all scheme dependent terms in the β-function are proportional at least to
(Nf )2 in all loops. Moreover, it is evident that the terms proportional to (Nf )0 in the anomalous
dimension do not depend on a subtraction scheme. Therefore, due to existence of the NSVZ
scheme, the NSVZ relation is satisfied for terms proportional to (Nf )1 in all orders, while terms
proportional to (Nf )α with α ≥ 2 are scheme-dependent.

In the non-Abelian case one should take into account existence of the Yukawa couplings
λijk. Under the finite renormalizations

α → α′(α, λ); λ → λ′(α, λ); Z ′
i
j(α′, λ′,Λ/µ) = zi

k(α, λ)Zk
j(α, λ,Λ/µ), (41)

where we assume that z and Z commute, the NSVZ relation is changed according to the following
rule:

β̃′(α′, λ′) = −
α2

2π(1 − C2α/2π)∂α/∂α′ − α2C(R)l
k∂ ln zk

l/∂ lnα′

{
3C2

−T (R) +
1

r
C(R)m

n
[
γ̃′

n
m(α′, λ′) −

3

2

(
(λ′)ljk γ̃′

l
i(α′, λ′)

∂ ln zn
m

∂(λ′)ijk
+ c.c.

)]

+
3

2
·
2π

α2

(
1 − C2

α

2π

)(
(λ′)ljk γ̃′

l
i(α′, λ′)

∂α

∂(λ′)ijk
+ c.c

)}

α=α(α′ ,λ′)
. (42)

We observe that in L loops the terms proportional to tr
(
C(R)L

)
are the same in both sides of

this equation for an arbitrary renormalization prescription [49].

7 Conclusion

For N = 1 SQED with Nf flavors, regularized by higher derivatives, the NSVZ β-function is
naturally obtained for the RG functions defined in terms of the bare coupling constant. These
functions do not depend on the renormalization prescription. The NSVZ β-function appears
because integrals which determine the β-function defined in terms of the bare coupling constant
are factorized into integrals of double total derivatives.

If the RG functions are defined in terms of the renormalized coupling constant, the NSVZ
β-function is obtained in a special subtraction scheme, called the NSVZ scheme. In case of
using the higher derivative regularization for Abelian supersymmetric theories this scheme is
obtained by imposing the boundary conditions (23) in all orders.

Although the NSVZ relation is not valid for an arbitrary renormalization prescription, it is
possible to prove that terms proportional to (Nf )1 (or proportional to trC(R)L in L loops in
the non-Abelian case) are scheme independent and satisfy the NSVZ relation in all schemes.
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