Bubble Observers in Bubbland Local Observables in a Landscape of Infrared Gauge Modes

Federico Urban

Université Libre de Bruxelles

June 08th, 2014 — QUARKS2014

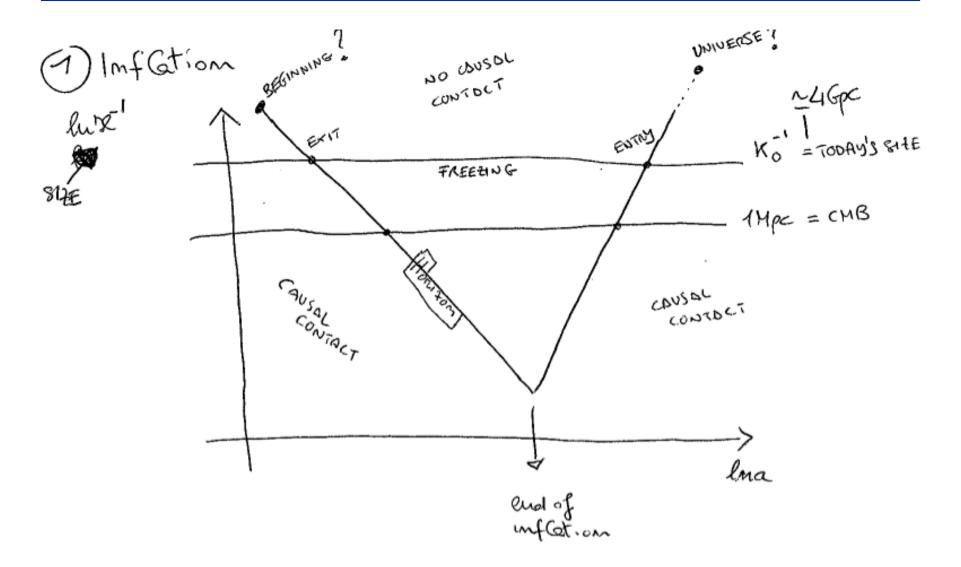
Bubble Zero

- i Inflation, AKA Bubbland
- ii Vectors & Anisotropies
- iii IR Fluctuations & Bias
- iv Background Precession
- v Results

 D Mota, M Thursrud, FU
 Phys. Lett. B 733C (2014) 140 [arXiv:1311.3302]

 D Mota, M Thursrud, FU
 JCAP 1404 (2014) 010 [arXiv:1312.7491]

Bubble One

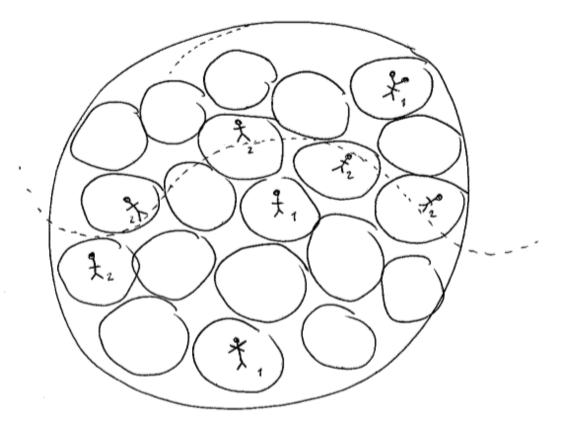


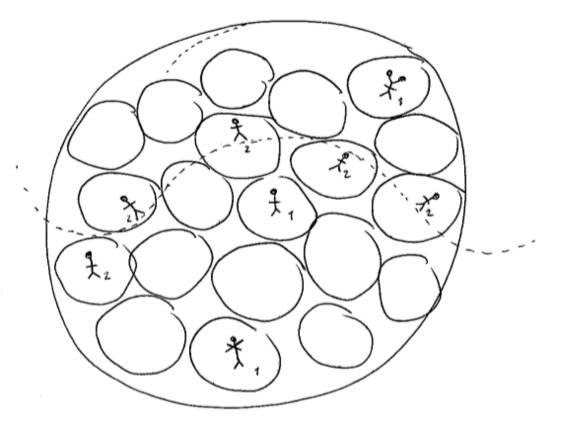
- \mathcal{N} that is, e-folds measure duration
- Total size of Bubbland is $e^{3\mathcal{N}_{\text{TOT}}}$

- \mathcal{N} that is, e-folds measure duration
- Total size of Bubbland is $e^{3\mathcal{N}_{\text{TOT}}}$
- Our observable Bubble instead covers $e^{3\mathcal{N}_0}$

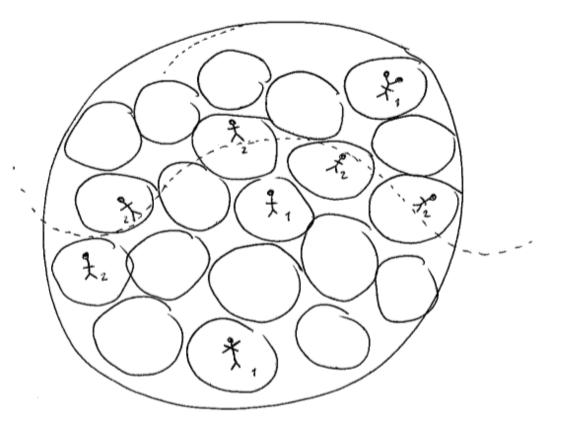
- \mathcal{N} that is, e-folds measure duration
- Total size of Bubbland is $e^{3\mathcal{N}_{\text{TOT}}}$
- Our observable Bubble instead covers $e^{3\mathcal{N}_0}$
- Ergo, there are $e^{3(\mathcal{N}_{TOT}-\mathcal{N}_0)}$ Bubbles

- \mathcal{N} that is, e-folds measure duration
- Total size of Bubbland is $e^{3\mathcal{N}_{\text{TOT}}}$
- Our observable Bubble instead covers $e^{3\mathcal{N}_0}$
- Ergo, there are $e^{3(\mathcal{N}_{TOT}-\mathcal{N}_0)}$ Bubbles
- Now: quantum fluctuations are a statistical object...

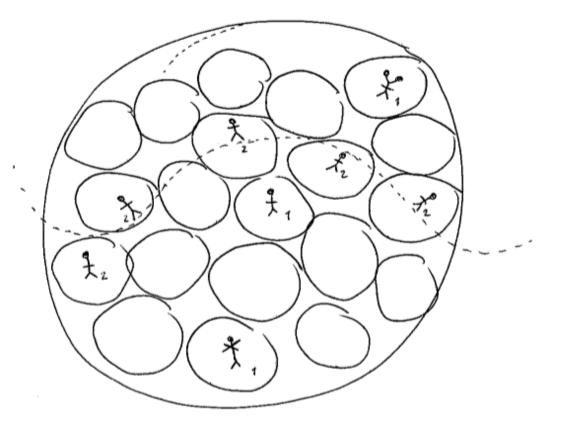




• Superhorizon waves may *bias* our Hubble Bobble



- Superhorizon waves may *bias* our Hubble Bobble
- 🧟 Q: Is this bias observable?



- Superhorizon waves may *bias* our Hubble Bobble
- 🧕 Q: Is this bias observable? A: Perhaps... 🥵

• Throw in a (bunch of) spectator vector fields \mathcal{A}_{μ}

- Throw in a (bunch of) spectator vector fields \mathcal{A}_{μ}
- Working example: $\mathcal{L} = f^2(\varphi) F_{\mu\nu} F^{\mu\nu}$
 - No Ghosts
 - $\circ~$ No Gauge Breaking

- Throw in a (bunch of) spectator vector fields \mathcal{A}_{μ}
- Working example: $\mathcal{L} = f^2(\varphi) F_{\mu
 u} F^{\mu
 u}$
 - No Ghosts
 - $\circ~$ No Gauge Breaking
- This possesses an attractor solution: $f \sim a^{-2}$

- Throw in a (bunch of) spectator vector fields \mathcal{A}_{μ}
- Working example: $\mathcal{L} = f^2(\varphi) F_{\mu
 u} F^{\mu
 u}$
 - No Ghosts
 - No Gauge Breaking
- This possesses an attractor solution: $f \sim a^{-2}$
- Look at superhorizon vector perturbations:
 - $\circ~$ The electric field $\mathcal{E}\sim\partial\mathcal{A}\sim const$
 - The vector survives inflationary pull
 - The vector classicalises

- Throw in a (bunch of) spectator vector fields \mathcal{A}_{μ}
- Working example: $\mathcal{L} = f^2(\varphi) F_{\mu\nu} F^{\mu\nu}$
 - No Ghosts
 - No Gauge Breaking
- This possesses an attractor solution: $f \sim a^{-2}$
- Look at superhorizon vector perturbations:
 - $\circ~$ The electric field $\mathcal{E}\sim\partial\mathcal{A}\sim const$
 - The vector survives inflationary pull
 - The vector classicalises

$$\implies \vec{\mathcal{E}}_{\mathsf{IR}}(\eta) = \int_{\mathsf{dawn of time}}^{\mathcal{H}} \mathsf{d}^3 k \ e^{-i\vec{k}\vec{x}} \ \delta\vec{\mathcal{E}}(\vec{k})$$

Infrared Statistics – Single Vector

- We are limited UV observers, so we do not directly probe $\vec{\mathcal{E}}_{IR}$
- This becomes a statistical object which inherits Gaussianity

 $\langle \vec{\mathcal{E}}_{IR} \cdot \vec{\mathcal{E}}_{IR} \rangle \simeq \mathcal{H}^4 \mathcal{N}$

Infrared Statistics – Single Vector

- We are limited UV observers, so we do not directly probe $\vec{\mathcal{E}}_{IR}$
- This becomes a statistical object which inherits Gaussianity

 $\langle \vec{\mathcal{E}}_{IR} \cdot \vec{\mathcal{E}}_{IR} \rangle \simeq \mathcal{H}^4 \mathcal{N}$

Spectrum

$$\mathcal{P}_{\zeta}(ec{k}) = \mathcal{P}^0_{\zeta}(k) \left[1 + g(k)\cos^2artheta
ight]$$

Infrared Statistics – Single Vector

- We are limited UV observers, so we do not directly probe $\vec{\mathcal{E}}_{IR}$
- This becomes a statistical object which inherits Gaussianity

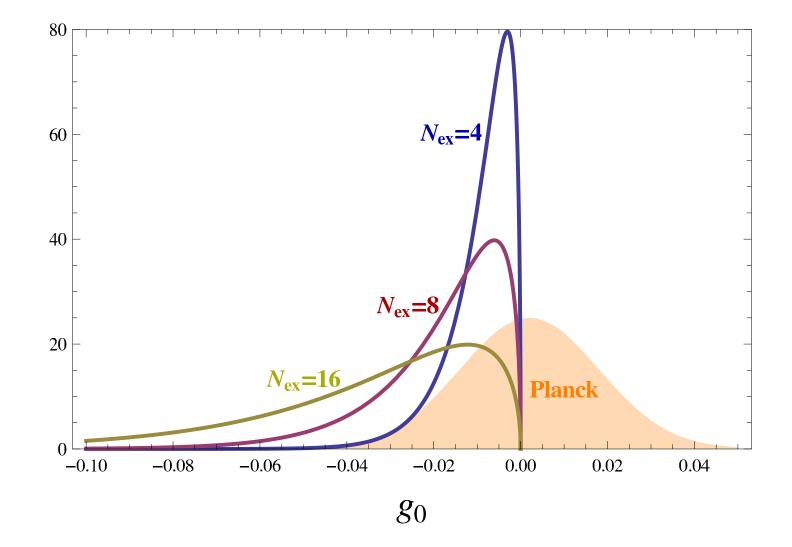
 $\langle \vec{\mathcal{E}}_{IR} \cdot \vec{\mathcal{E}}_{IR} \rangle \simeq \mathcal{H}^4 \mathcal{N}$

Spectrum

$$\mathcal{P}_{\zeta}(ec{k}) = \mathcal{P}^0_{\zeta}(k) \left[1 + g(k)\cos^2artheta
ight]$$

One parameter: Amplitude $g(k) \sim -|\mathcal{E}_{\mathsf{IR}}(\eta_0)|^2 \mathcal{N}_k^2$

Probability Distributions



Tweedledum (k_1) and Tweedledee (k_2)

• Tweedledum leaves the horizon at $\eta_1 = -1/k_1$ It sees $\vec{\mathcal{E}}_{\mathsf{IR}}(\eta_1)$ made of all $k < k_1$

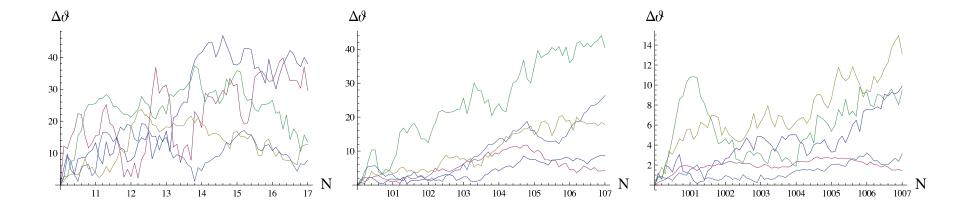
- Tweedledum leaves the horizon at $\eta_1 = -1/k_1$ It sees $\vec{\mathcal{E}}_{\mathsf{IR}}(\eta_1)$ made of all $k < k_1$
- As Tweedledee approaches ${\cal H}$ more modes add up to $\vec{{\cal E}}_{\rm IR}$

- Tweedledum leaves the horizon at $\eta_1 = -1/k_1$ It sees $\vec{\mathcal{E}}_{\mathsf{IR}}(\eta_1)$ made of all $k < k_1$
- As Tweedledee approaches ${\cal H}$ more modes add up to ${\cal \vec{E}}_{\rm IR}$
- Tweedledee leaves the horizon at $\eta_2 = -1/k_2$ It sees $\vec{\mathcal{E}}_{IR}(\eta_2) \neq \vec{\mathcal{E}}_{IR}(\eta_1)$ made of all $k < k_2$

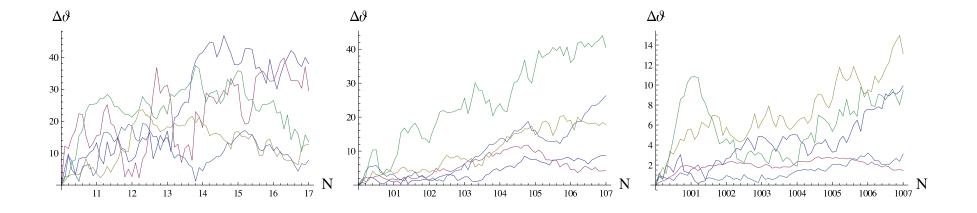
- Tweedledum leaves the horizon at $\eta_1 = -1/k_1$ It sees $\vec{\mathcal{E}}_{\mathsf{IR}}(\eta_1)$ made of all $k < k_1$
- As Tweedledee approaches $\mathcal H$ more modes add up to $ec{\mathcal E_{\mathsf{IR}}}$
- Tweedledee leaves the horizon at $\eta_2 = -1/k_2$ It sees $\vec{\mathcal{E}}_{IR}(\eta_2) \neq \vec{\mathcal{E}}_{IR}(\eta_1)$ made of all $k < k_2$

$$\Rightarrow~\vec{\mathcal{E}}_{\text{IR}}$$
 will be pointing in a different direction

The background vector makes a random walk in direction space

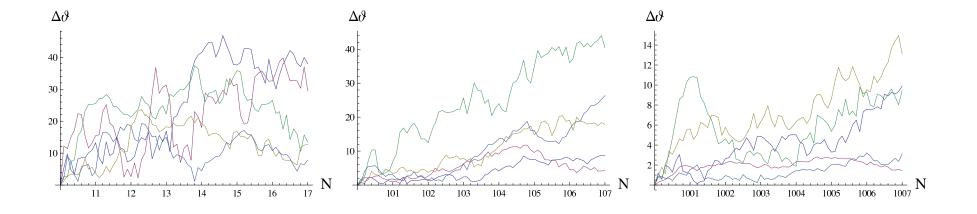


The background vector makes a random walk in direction space



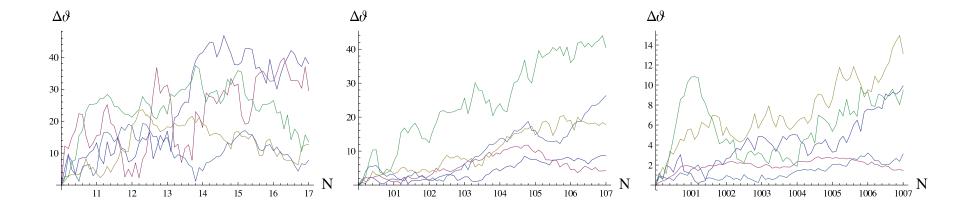
The effect is highly suppressed due to the multitude of Bubbles

The background vector makes a random walk in direction space



The effect is highly suppressed due to the multitude of Bubbles Seven e-folds make a hundred thousand millions Bubbles

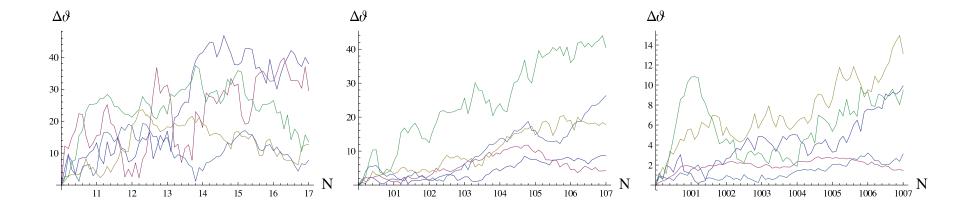
The background vector makes a random walk in direction space



The effect is highly suppressed due to the multitude of Bubbles Seven e-folds make a hundred thousand millions Bubbles

So, a three hundred thousandth statistical suppression

The background vector makes a random walk in direction space



The effect is highly suppressed due to the multitude of Bubbles Seven e-folds make a hundred thousand millions Bubbles

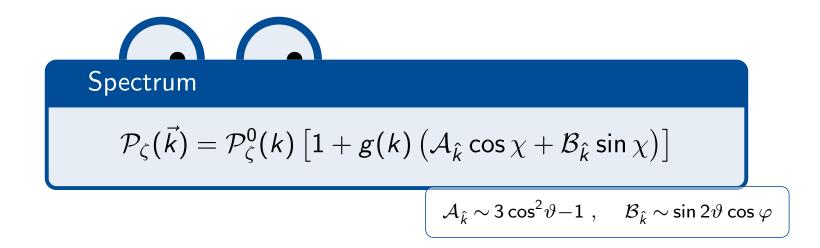
So, a three hundred thousandth statistical suppression Poor little thing...

Infrared Statistics – Multiple Vector

Multiple vector case – identical coupling: $\mathcal{L} = \sum_{a} f^{2}(\varphi) F^{a}_{\mu\nu} F^{\mu\nu}_{a}$

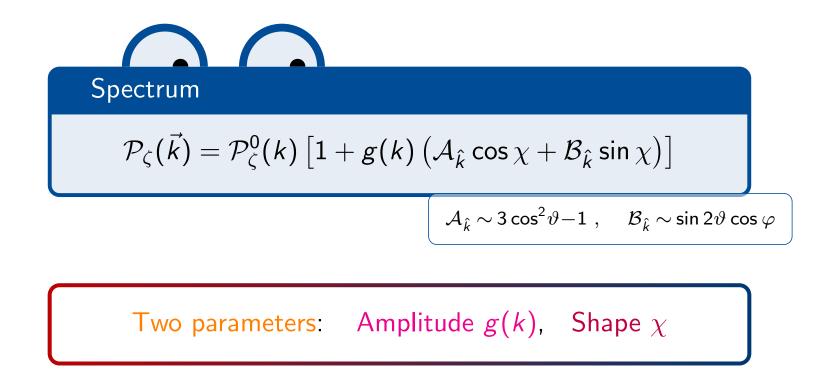
Infrared Statistics – Multiple Vector

Multiple vector case – identical coupling: $\mathcal{L} = \sum_{a} f^{2}(\varphi) F^{a}_{\mu\nu} F^{\mu\nu}_{a}$

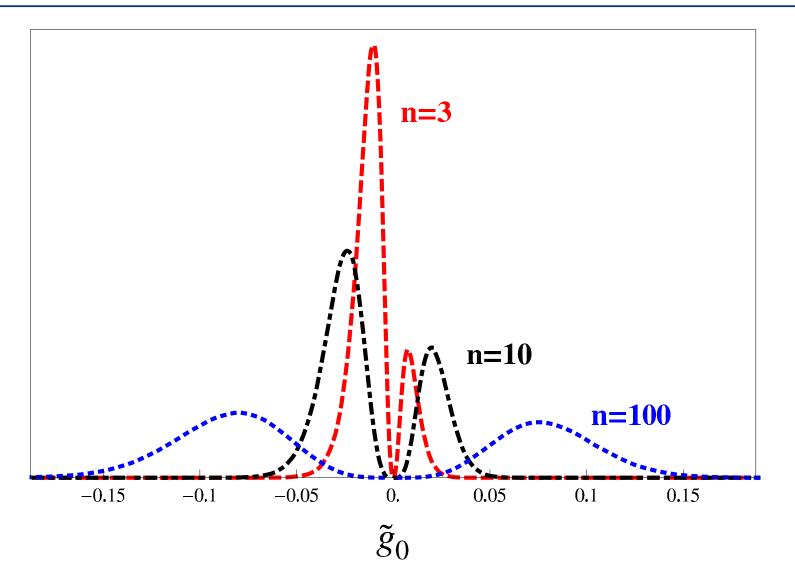


Infrared Statistics – Multiple Vector

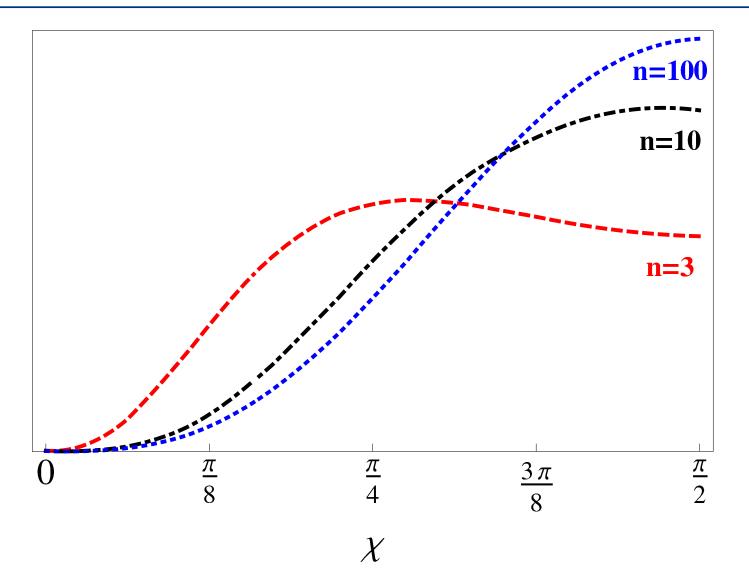
Multiple vector case – identical coupling: $\mathcal{L} = \sum_{a} f^2(\varphi) F^a_{\mu\nu} F^{\mu\nu}_a$



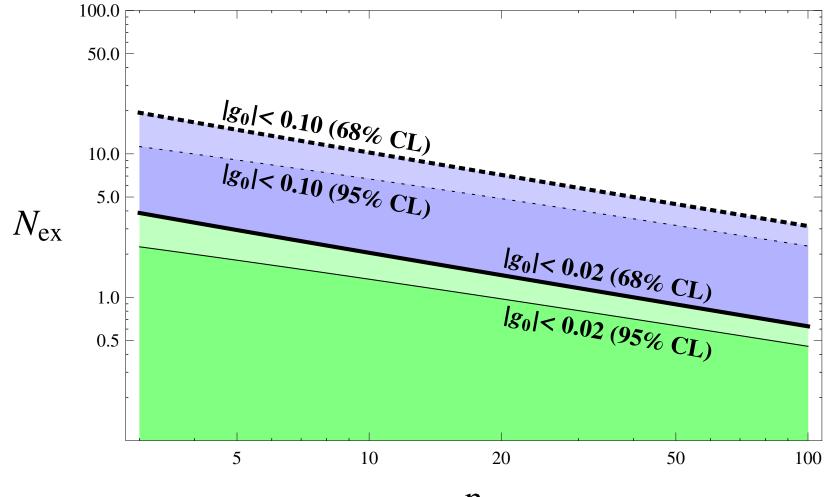
Probability Distributions I



Probability Distributions II



How Likely Are We?



n

Summary

- Inflation generates Bubbland
 - Bubbland is comprised of a multitude of Bubbles
 - As observers, we have access to only one Bubble
 - Our link with "The Theory" is statistical observations are biassed
- Vectors generate anisotropies
 - Spectator gauge fields can develop into a classical vector background
 - Curvature perturbations are quadrupole-modulated: $\mathcal{P}^{0}_{\zeta}(k) \left[1 + g(k) \cos^{2} \vartheta\right]$
 - (Non-)Observations of g(k) put statistical constraints on $\bar{\mathcal{N}}$
- The precession effect
 - The background vector is not a constant, but precesses with time
 - In the multi-vector case this produces two important features:
 - a. The quadrupole amplitude g(k) can be *positive*
 - b. We need one further shape parameter χ to describe the correction:

$$\mathcal{P}^{0}_{\zeta}(k)\left[1+g(k)\left(\mathcal{A}_{\hat{k}}\cos\chi+\mathcal{B}_{\hat{k}}\sin\chi
ight)
ight]$$

 \Rightarrow All in all, living in the Bubble can be quite deceiving \leftarrow bottom line