Primary composition of ultra-high-energy cosmic rays with the Telescope Array surface detector

G. Rubtsov, S. Troitsky for the Telescope Array Collaboration

18th Quarks

Suzdal, June 7, 2014

Telescope Array Collaboration

T. Abu-Zayyad¹ R. Aida² M. Allen¹ R. Anderson¹ R. Azuma³ E. Barcikowski¹ J.W. Belz¹ D.R. Bergman¹ S.A. Blake¹ R. Cady¹ B.G. Cheon⁴ J. Chiba⁵ M. Chikawa⁶ E.J. Cho⁴ W.R. Cho⁷ H. Fujii⁸ T. Fujii⁹ T. Fukuda³ M. Fukushima^{10;11} W. Hanlon¹ K. Hayashi³ Y. Hayashi⁹ N. Hayashida¹⁰ K. Hibino¹² K. Hiyama¹⁰ K. Honda² T. louchi³ D. lkeda¹⁰ K. lkuta² N. Inoue¹³ T. Ishij² R. Ishimori³ D. Ivanov^{1;14} S. Iwamoto² C.C.H. Jui¹ K. Kadota¹⁵ F. Kakimoto³ O. Kalashev¹⁶ T. Kanbe² K. Kasahara¹⁷ H. Kawai¹⁸ S. Kawakami⁹ S. Kawana¹³ E. Kido¹⁰ H.B. Kim⁴ H.K. Kim⁷ J.H. Kim¹ J.H. Kim⁴ K. Kitamoto⁶ S. Kitamura³ Y. Kitamura³ K. Kobayashi⁵ Y. Kobayashi³ Y. Kondo¹⁰ K. Kuramoto⁹ V. Kuzmin¹⁶ Y.J. Kwon⁷ J. Lan¹ S.I. Lim²⁰ S. Machida³ K. Martens¹¹ T. Matsuda⁸ T. Matsuura³ T. Matsuyama⁹ J.N. Matthews¹ M. Minamino⁹ K. Miyata⁵ Y. Murano³ I. Myers¹ K. Nagasawa¹³ S. Nagataki²¹ T. Nakamura²² S.W. Nam²⁰ T. Nonaka¹⁰ S. Ogio⁹ M. Ohnishi¹⁰ H. Ohoka¹⁰ K. Oki¹⁰ D. Oku² T. Okuda²³ A. Oshima⁹ S. Ozawa¹⁷ I.H. Park²⁰ M.S. Pshirkov²⁴ D.C. Rodriguez¹ S.Y. Roh¹⁹ G. Rubtsov¹⁶ D. Rvu¹⁹ H. Sagawa¹⁰ N. Sakurai⁹ A.L. Sampson¹ L.M. Scott¹⁴ P.D. Shah¹ F. Shibata² T. Shibata¹⁰ H. Shimodaira¹⁰ B.K. Shin⁴ J.I. Shin⁷ T. Shirahama¹³ J.D. Smith¹ P. Sokolsky¹ B.T. Stokes¹ S.R. Stratton^{1;14} T. Stroman¹ S. Suzuki⁸ Y. Takahashi¹⁰ M. Takeda¹⁰ A. Taketa²⁵ M. Takita¹⁰ Y. Tameda¹⁰ H. Tanaka⁹ K. Tanaka²⁶ M. Tanaka⁹ S.B. Thomas¹ G.B. Thomson¹ P. Tinyakov^{16;24} I. Tkachev¹⁶ H. Tokuno³ T. Tomida²⁷ S. Troitsky¹⁶ Y. Tsunesada³ K. Tsutsumi³ Y. Tsuyuguchi² Y. Uchihori²⁸ S. Udo¹² H. Ukai² G. Vasilov¹ Y. Wada¹³ T. Wong¹ M. Wood¹ Y. Yamakawa¹⁰ R. Yamane⁹ H. Yamaoka⁸ K. Yamazaki⁹ J. Yang²⁰ Y. Yoneda⁹ S. Yoshida¹⁸ H. Yoshii²⁹ X. Zhou⁶ R. Zollinger¹ Z. Zundel¹

 ¹ University of Utah ² University of Yamanashi ³Tokyo Institute of Technology ⁴Hanyang University ⁵Tokyo University of Science ⁶Kinki University ⁷Yonsei University ⁸KEK ⁹Osaka City University ¹⁰University of Tokyo (ICRR)
 ¹¹ University of Tokyo (Kavli Institute) ¹²Kanagawa University ¹³Saitama University ¹⁴Rutgers University ¹⁵Tokyo City University, ¹⁶Russian Academy of Sciences (INR) ¹⁷Waseda University ¹⁸Chiba University ¹⁹Chungnam National University ²⁰Ewha Womans University ²¹Kyoto University ²²Kochi University ²³Ritsumeikan University ²⁴Universite Libre de Bruxelles ²⁵University of Tokyo (Earthquake Institute) ²⁶Hiroshima City University ²⁷RIKEN ²⁸Japanese National Institute of Radiological Science ²⁹Ehime University

Belgium, Japan, Korea, Russia, USA

Telescope Array surface detector

Telescope Array surface detector

- 507 SD's, 3 m² each
- 680 km² area
- 6 years of operation

Largest UHECR statistics in the Northern Hemisphere

▶ I. UHECR ($\gtrsim 10^{18}$ eV) composition overview

II. New method proposal

III. Data set and results

Why primary composition is important?

- understand the physics of the sources
 - acceleration mechanism for bottom-up models
 - top-down: incompatible with heavy
- predict the flux of cosmogenic photons and neutrino
- probe the interaction cross-section at the highest energies
- precision tests of Lorentz-invariance

UHECR $\gtrsim 10^{18}$ eV composition measurements

Experiment	detector	Observable
HiRes	fluorescence stereo	X _{MAX}
Pierre Auger	fluorescence + SD	X _{MAX}
	(hybrid)	
Telescope Array	stereo	X _{MAX}
Telescope Array	hybrid	X _{MAX}
Yakutsk	muon	$ ho_{\mu}$ (1000)
Pierre Auger	SD	X^{μ}_{MAX}
Pierre Auger	SD	risetime asymmetry

SD – surface detector X_{MAX} – depth of the shower maximum X^{μ}_{MAX} – muon production depth risetime – time from 10% to 50% for the total integrated signal

Composition from the depth of the shower maximum

HiRES

Phys.Rev.Lett.104.161101

Auger

ICRC'2013; Phys.Rev.Lett.104.091101

Telescope Array fluorescence stereo & hybrid

[Telescope Array] JPS'2014, ICRC'2013

L.G. Dedenko et al., J.Phys.G 39 095202 (2012)

Auger SD composition

Two composition sensitive SD observables:

muon production height

asymmetry of risetime

[Auger] ICRC'11, arXiv:1107.4804

Arguments for light and heavy composition

 $\sigma(X_{MAX})$ data indicate sharp composition change

density of sources; non-observation of clustering

- If the highest energy events are protons, the nearest sources should identify themselves as bright spots of a few degree angular size (for *E* ∼ 10²⁰ eV)
- No cosmic ray small scale clustering is observed. TA hotspot is of a larger size (~ 20°).

K.-H. Kampert, P. Tinyakov Comptes Rendus Physique, 15, 4, 2014

- In case of protons, non-observation of clustering at E > 5 × 10¹⁹ eV means that the density of sources is high, ρ > 10⁻⁴ Mpc⁻³
- Hard to explain large density of sources (not impossible)

Kalashev, Ptitsyna, Troitsky, Phys. Rev. D86 (2012) 063005

Sharp composition change

Mixed composition has larger σ(X_{MAX}) than uniform. σ(X_{MAX}) is monotonic only if the change is very sharp: switch from p to He, then switch from He to N, etc.

D. Hooper, A.M. Taylor Astropart. Phys. 33 (2010) 151-159

► Alternatively: the enhancement of cross-section at high energies will explain both X_{MAX} and σ(X_{MAX}) with protons

R. Engel, 31th ICRC, arXiv:0906.0418v1

▶ I. UHECR ($\gtrsim 10^{18}$ eV) composition overview

II. New method proposal

III. Data set and results

Why surface detector?

- Best separation power is achieved with X_{MAX}, but SD provides an independent technique which has different systematics.
- Cross-check of techniques possible for hybrid events.
- SD has ~ 10 times larger duty cycle (important for highest energy range)

Composition analysis merit factor			
	X_{MAX}	SD	
precision	\odot	\odot	
duty cycle	\odot	\bigcirc	
systematics	\odot	\odot	

 one needs new methods to improve precision and understand systematics

Area over peak - new SD observable

Consider a surface station time-resolved signal

- Both peak and area are well-measured and not much affected by fluctuations
- First introduced by Auger in the context of neutrino search

Phys.Rev.Lett. 100 (2008) 211101

- We calculate AoP for each not-saturated detector with core distance r > 600 m
- We fit AoP(r) with a linear fit:

•
$$AoP(r) = \alpha - \beta(r/r_0 - 1.0)$$

- $r_0 = 1200 \text{ m}, \alpha$ value at 1200 m, β slope
- Both α and β are sensitive to composition

AoP for one detector SD#1522, r = 780 m

We define the percentile ranks of α and β parameters for proton primaries C_α,C_β:

$$\mathcal{C}^{i}_{lpha} = \int\limits_{-\infty}^{lpha^{\prime}} f^{i}_{MC,p}(lpha) dlpha \,,$$
 $\mathcal{C}^{i}_{eta} = \int\limits_{-\infty}^{eta^{i}} f^{i}_{MC,p}(eta) deta \,,$

where $f_{MC,p}^{i}(\alpha)$ is an α distribution function for proton Monte-Carlo events compatible by zenith angle with the real event "i".

 α_i , β_i - measured AoP and slope for event "i".

- The values C^i_{α} and C^i_{β} belong to [0,1] by definition.
- The transformation removes strong dependencies on zenith angle and energy and was successfully applied before for TA photon flux limits.

▶ I. UHECR ($\gtrsim 10^{18}$ eV) composition overview

II. New method proposal

III. Data set and results

Data collected by TA surface detector for the five years: 2008-05-11 — 2013-05-04

Cuts:

- 1. quality cuts used for spectral analysis
- **2.** θ < 45°
- 3. 7 or more detectors triggered
- 4. $E > 10^{18} \text{ eV}$

10733 events after cuts

- CORSIKA with QGSJET-II-03, FLUKA and EGS4.
 Additional set with SIBYLL 2.1.
- Thinning with weight optimisation ($\varepsilon = 10^{-6}$)

Kobal, Astropart. Phys. 15:259,2001

Dethinning technique is used

Stokes et al, Astropart. Phys. 35:759,2012

- Detector response is calculated with GEANT sampler
- Same reconstruction code with exactly same cuts is applied to both data and Monte-Carlo sets

Results

The events are split by energy bins. For each bin C_α and C_β histograms are produced. Below is an example for 10^{18.9} < E < 10^{19.1}

We define a likelihood for a mixed composition:

$$\log \mathcal{L} = (1 - \frac{r}{2})(\log(p_{\mathcal{KS}}(\mathcal{C}_{\alpha}) + \log(p_{\mathcal{KS}}(\mathcal{C}_{\beta}))),$$

where *r* is the correlation coefficient for C_{α} and C_{β} , p_{KS} – Kolmogorov-Smirnov test probability.

confidence intervals obtained assuming a flat prior on In(A)

Results: Telescope Array SD composition

this talk; ICRC'13

Results comparison: TA SD vs TA hybrid

[TA] H.Sagawa, JPS'14

Results comparison: TA SD vs HiRes stereo

[HiRes] Phys.Rev.Lett.104.161101

Results comparison: TA SD vs Auger hybrid

[Auger] ICRC'2013; Phys.Rev.Lett.104.091101

Results comparison: TA SD vs Auger SD

[Auger] ICRC'11, arXiv:1107.4804

Results comparison: TA SD vs Yakutsk

L.G. Dedenko et al., J.Phys.G 39 095202 (2012)

Summary: comparisons to other experiments

Conclusions and outlook

- A new method is proposed for UHECR composition analysis
- Method is applied to TA SD five-year data: first results are presented
- Preliminary composition is compatible with protons

Plan:

- Cross-calibration with hybrid events
- Extend to lower energies with TALE SD data

Thank you!

Backup slides

QGSJET-II-03

SIBYLL

SIBYLL

SIBYLL

