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Best guess for pre-hot comsological epoch: inflation

Starobinsky’ 1979, Guth’ 1981,

Linde’ 1982, Albrecht, Steinhardt’ 1982

Homogeneous and isotropic Universe:
Friedmann–Lemaitre–Robertson–Walker (FLRW) metric

ds2 = dt2−a2(t)dx2 .

Inflation: nearly exponential expansion

a(t) = e
∫

Hdt

H = ȧ/a ≈ const (Hubble parameter).

Exponential expansion: tiny region of space expands to huge size

in, say, ∆t = 100H−1.

Large, spatially flat, homogeneous Universe out of tiny region of
space.



Can one in principle

create a universe in the laboratory?

Question raised in mid-80’s, right after invention of inflationary
theory

Berezin, Kuzmin, Tkachev’ 1984;

Guth, Farhi’ 1986

Idea: create, in a finite region of space, the conditions such
that this region enters inflationary regime =⇒ this region will
inflate to enormous size and in the end will look like our
Universe.

Do not need much energy: pour little more than Planckian
energy into little more than Planckian volume. But
At that time: negaive answer!
[In the framework of classical General Relativity]

Guth, Farhi’ 1986;

Berezin, Kuzmin, Tkachev’ 1987



Need inflationary conditions in a region larger than Hubble

volume, R > H−1

Penrose theorem:

Penrose’ 1965

There must be singularity in the past

Assumption of the theorem: Null Energy Condition, NEC

Tµνnµnν > 0

for any null vector nµ , such that nµnµ = 0.

Tµν = energy-momentum tensor



Trapped surface:

a closed surface on which outward-pointing light rays actually
converge (move inwards)

Spherically symmetric examples:

ds2 = g00dt2+2g0RdtdR+gRRdR2−R2dΩ2

4πR2: area of a sphere of constant t, R.

Trapped surface: R decreases along all light rays.

Sphere inside horizon of Schwarzschild black hole

Hubble sphere in contracting Universe =⇒
Hubble sphere in expanding Universe = anti-trapped surface
=⇒ singularity in the past.



Meaning:

A. Vikman’s talk

Homogeneous and isotropic region of space: metric

ds2 = dt2−a2(t)dx2 .

Local Hubble parameter H = ȧ/a.

Wish to create region whose size is larger than H−1

This is the definition of a universe

Hubble size regions evolve independently of each other

=⇒ Legitimate to use eqs. for FLRW universe



A combination of Einstein equations:

dH
dt

=−4πG(ρ + p)

ρ = T00 = energy density

p = T11 = T22 = T33 = effective pressure.

Null Energy Condition:
Tµνnµnν ≥ 0, nµ = (1,1,0,0) =⇒ ρ + p > 0 =⇒ dH/dt < 0,

Hubble parameter was greater early on.

At some moment in the past, there was a singularity, H = ∞.



Side remark

Null Energy Condition, ρ + p > 0 =⇒ dH/dt < 0 =⇒
impossibility of a bounce in cosmology,

transition from collapse (H < 0)

to expansion (H > 0)

Another side of the NEC

Covariant energy-momentum conservation:

dρ
dt

=−3H(ρ + p)

NEC: energy density decreases during expansion,

except for p =−ρ , cosmological constant.



Ways out so far:

Give up General Relativity ⇐⇒ possible, but at strong
gravitational fields only

Mukhanov, Brandenberger’ 1992

Give up classical field theory

Frolov, Markov, Mukhanov’ 1987

⇐⇒ creation of a universe as tunneling event, possible but
rare and not under full control.

Berezin, Kuzmin, Tkachev’ 1988

Farhi, Guth, Guven’ 1990

Fischler, Morgan, Polchinski’ 1990



Can Null Energy Condition

be violated?

A. Vikman’s talk

Folklore until recently: NO!

Pathologies:

Ghosts:

E =−
√

p2+m2

Example: theory with wrong sign of kinetic term,

L =−(∂φ)2 =⇒ ρ =−φ̇2−(∇φ)2 , p =−φ̇2+(∇φ)2

ρ + p =−2φ̇2 < 0

Catastrophic vacuum instability



Other pathologies

Gradient instabilities:

E2 =−(p2+m2) =⇒ ϕ ∝ e|E|t

Superluminal propagation of excitations

No-go theorem for theories with Lagrangians involving first
derivatives of fields only

Dubovsky, Gregoire, Nicolis, Rattazzi’ 2006

NEC violation today: YES,

Null Energy Condition can be violated without obvious
pathologies

Senatore’ 2004;

V.R.’ 2006;

Creminelli, Luty, Nicolis, Senatore’ 2006



General properties of non-pathological NEC-violating field
theories:

Non-standard kinetic terms

Non-trivial background

Non-standard kinetic terms: second derivative
Lagrangians yielding second derivative field equations

Horndeski’ 1974

Fairlie, Govaerts, Morozov’ 1992

Luty, Porrati, Rattazzi’ 2004

Nicolis, Rattazzi, Trincherini’ 2009

Single scalar field π; X = ∂µπ∂ µπ

Ln = Kn(X ,π)∂ µ1∂[µ1
π · · · · ·∂ µn∂ µn]π

Five Lagrangians in 4D, including K0

Sivanesan’s talk

Generalization to GR: L0, L1 trivial, Ln>1 non-trivial

Deffayet, Esposito-Farese, Vikman’ 09



Playground:

L = F(Y ) ·e4π +K(Y ) ·2π ·e2π

2π ≡ ∂µ∂ µπ , Y = e−2π · (∂µπ)2

Deffayet, Pujolas, Sawicki, Vikman’ 2010

Kobayashi, Yamaguchi, Yokoyama’ 2010

Second order equations of motion

Scale invariance: π(x)→ π ′(x) = π(λx)+ lnλ .

(technically convenient)



Homogeneous solution

in Minkowski space (attractor)

eπc =
1√

Y∗(t∗− t)

Y ≡ e−2πc · (∂µπc)
2 = Y∗ = const, a solution to

Z(Y∗)≡−F +2Y∗F ′−2Y∗K +2Y 2
∗ K ′= 0

′ = d/dY .

Energy density

ρ = e4πcZ = 0

Effective pressure T11:

p = e4πc (F −2Y∗K)

Can be made negative by suitable choice of F(Y ) and K(Y )
=⇒ ρ + p < 0, violation of Null Energy Condition.



Switching on gravity

p = e4πc (F −2Y∗K) =− M4

Y 2∗ (t∗− t)4 , ρ = 0

M: mass scale characteristic of π

Use Ḣ =−4πG(p+ρ) =⇒

H =
4π
3

M4

M2
PlY

2∗ (t∗− t)3

NB:

ρ ∼ M2
PlH

2 ∼ 1

M2
Pl(t∗− t)6

Early times =⇒ weak gravity, ρ ≪ p, expansion irrelevant for

dynamics of π



Perturbations about homogeneous solution

Minkowski

π(xµ) = πc(t)+δπ(xµ)

Quadratic Lagrangian for perturbations:

L(2) = e2πcZ ′(∂tδπ)2−V (~∇δπ)2+W (δπ)2

V =V [Y ;F,K,F ′,K′,K′′]. Absence of ghosts:

Z ′ ≡ dZ/dY > 0

Absence of gradient instabilities and of superluminal
propagation

V > 0 ; V < e2πcZ ′

Can be arranged.

NB: Useful for constructing alternatives to inflation, Vikman’s
talk



Creating a universe:

first attempt

Prepare quasi-homogeneous initial configuration.

Large sphere Y = Y∗ inside, π = const (Minkowski) outside,

smooth interpolation in between.

Spatial derivatives small compared with time derivatives.

Initial state: energy density and pressure small everywhere,
geometry nearly Minkowskian. No antitrapped surface.
Possible to create.

Evolution: Genesis inside the sphere, Minkowski outside

Done?

Not quite!



Obstruction

Energy density:

ρ = e4πcZ

Z = 0 both outside the sphere and inside the sphere =⇒
dZ/dY is negative somewhere in between.

On the other hand: absence of ghosts requires

dZ/dY > 0

Hence, there are ghosts somewhere in space ≡ instability

This is a general property of theories of one scalar field with

Second order field equations

Scale invariance: π(x)→ π ′(x) = π(λx)+ lnλ .



Proof

Equation for homogeneous field always coincides with energy
conservation (Noether theorem)

δS
δπ

∝ −ρ̇ = 0

This is second order equation, hence ρ contains first
derivatives only, hence by scale invariance

ρ = e4π ·Z[e−2π(∂π)2]

Write π = πc +δπ, then eqn. for δπ is

−Z′ ∂ 2
t δπ + lower time derivatives = 0

Hence

L (δπ) ∝ Z′(∂tδπ)2+ . . .

QED



Possible ways out

Give up Genesis inside the sphere, take ρ 6= 0 there.

Hardly works. Z = 0 (Minkowski) is attractor.

Give up scale invariance.

A lot more technically demanding.

Take initial data such that gravity is important

Even more technically demanding.

Give up single field, make model more complicated.

But keep dynamics simple.



Second – and successful (?) attempt

Make the Lagrangian for π explicitly dependent on radial
coordinate r.

To this end, introduce a new field whose background
configuration is ϕ(r)
Example:

F= a(ϕ)+b(ϕ)(Y −ϕ)+
c(ϕ)

2
(Y −ϕ)2

K= κ(ϕ)+β (ϕ)(Y −ϕ)+
γ(ϕ)

2
(Y −ϕ)2

Choose functions a(ϕ), ... in such a way that

quasi-homogeneous solution is

eπ =
1

√ϕ0t∗(r)−
√

ϕ(r)t

Make sure that there are no pathologies about this solution.



Interior: Y = ϕ0 =⇒ Genesis t∗,in small =⇒ quick start

Exterior π̇ = 0 =⇒ Y = 0 =⇒ Minkowski

r

ϕ

R1 R

ϕ

t*

t*, out

t*, in



Initial conditions, t = 0: at r < R pressure

pin =
M4

Y 2
0 t4

∗,in

Require pinR3/M2
Pl ≪ R =⇒ weak gravity, gravitational potentals

small everywhere.
Together with t∗,in ≪ R this guarantees

Hin =
4πM4

3M2
PlY

2
0 t3

∗,in
≪ R−1

No antitrapped surfaces initially. Anti-trapped surface (Hubble size)
gets formed when

(t∗,in − t1)∼
(

M4R

M2
PlY

2
0

)1/3

Gravity is still weak at that time. No black hole (yet?).



Creation of a universe in controlled, weak gravity regime

Why question mark?

What do spatial gradients do?

Where does the system evolve once gravity is turned on?

What is the global geometry?

Does a black hole get formed?

Explicit (numerical) solution needed



To conclude

There exist field theory models with healthy violation of the
Null Energy Condition

This removes obstruction for creating a universe in the
laboratory

A concrete scenario is fairly straightforward to design.

Are there appropriate fields in Nature?

Hardly. Still, we may learn at some point that our Universe
went through Genesis or bounce phase. This will mean that
Null Energy Condition was violated in the past by some exotic
fields. In that case one may try to use the these fields for
creating a universe in the laboratory.
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pin =
M4

Y 2
0 t4
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