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Modified gravity theories: examples

Covariant non-linear theory of massive gravity

S = M2
Pl

∫
d4x
√
−g

[
R

2
+ m2

g (L2 + α3L3 + α4L4)

]
;

Li = Li (δ
µ
ν −

√
gµρηab∂ρφa∂νφb)

de Rham, Gabadadze, 2010
de Rham, Gabadadze, Tolley, 2010

Free of Boulware-Deser ghosts
Hassan, Rosen, 2011

Provides self-accelerated cosmological solutions, Λ = c(αi )m2
g

Gumrukcuoglu, Lin, Mukohyama, 2011
de Felice et al., 2013
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Modified gravity theories: examples

Decoupling limit of covariant massive gravity:
MPl →∞ ; mg → 0 ; MPlm

2
g = const

⇓
Galileon theory

S =

∫
d4x

[
1

2
(∂µπ)2 − ∂2

µπ(∂µπ)2 + ...

]
; ∂µπ → ∂µπ + cµ invariance

Nicolis, Rattazzi, Trincherini, 2009

Features

Ghost-free

Late time cosmic acceleration

Alternative to inflation (Galilean Genesis)
Creminelli, Nicolis, Trincherini, 2010

Creminelli et al., 2012
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Modified gravity theories: problems

One and the same feature of all these theories — presence of superluminal
modes on nontrivial backgrounds

Galileon
Nicolis, Rattazzi, Trincherini, 2009

Massive Gravity
Burrage et al., 2011

de Rham, Gabadadze, Tolley, 2011

Superluminality itself looks not so bad...

⇓
Possible problems with causality

⇓

Chronology protection conjecture — there are no closed timelike curves.
Proven for some cases.

Mukhanov, Babichev, Vikman, 2007
de Rham et al., 2011
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Modified gravity theories: problems

Another problem — UV-completion
Adams et al., 2006

Key moment: number of derivatives in self-coupling should be greater than 2.
Take for example Galileon second term.

L = ∂µπ ∂
µπ +

c

Λ4
∂2
µπ(∂νπ)2 + ... ; c < 0

Superluminality

Problems with Lorentz notion of causality

Scattering amplitudes do not satisfy S-matrix analyticity axioms

⇓

Superluminal effective theories could not be UV-completed to local QFT or
unitary string theory!

Mikhail Kuznetsov Effects of Lorentz violation in superluminal theories



Modified gravity theories: problems

Another problem — UV-completion
Adams et al., 2006

Key moment: number of derivatives in self-coupling should be greater than 2.
Take for example Galileon second term.

L = ∂µπ ∂
µπ +

c

Λ4
∂2
µπ(∂νπ)2 + ... ; c < 0

Superluminality

Problems with Lorentz notion of causality

Scattering amplitudes do not satisfy S-matrix analyticity axioms

⇓

Superluminal effective theories could not be UV-completed to local QFT or
unitary string theory!

Mikhail Kuznetsov Effects of Lorentz violation in superluminal theories



Modified gravity theories: problems

Another problem — UV-completion
Adams et al., 2006

Key moment: number of derivatives in self-coupling should be greater than 2.
Take for example Galileon second term.

L = ∂µπ ∂
µπ +

c

Λ4
∂2
µπ(∂νπ)2 + ... ; c < 0

Superluminality

Problems with Lorentz notion of causality

Scattering amplitudes do not satisfy S-matrix analyticity axioms

⇓

Superluminal effective theories could not be UV-completed to local QFT or
unitary string theory!

Mikhail Kuznetsov Effects of Lorentz violation in superluminal theories



Lorentz breaking: toy model

Plan

Explicit demonstration on Lorentz invariance violation by quantum effects

Calculation of stress-energy tensor VEV

Toy model with superluminality in D=2

S =

∫
d2x

[
1

2
(∂µφ ∂

µφ)− m2

2
φ2− 1

4Λ2
(∂µφ ∂

µφ)2 + Mδ(x)φ

]
Consider classical perturbations on a background of a static solution. It is
enough to consider EOM without non-linear φ term.

φ′′ −m2φ = −Mδ(x) ⇒ φ̃ =
M

2m
e−m|x|
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Superluminality & classical stability

Consider quadratic action for classical perturbations φ = φ̃+ ξ;
collect terms up to the order 1

Λ2

Sξ =

∫
d2x

[
1

2
Zµν∂µξ ∂νξ −

m2

2
ξ2

]
; Zµν =

(
1 + M2

4Λ2 e
−2m|x| 0

0 −1− 3M2

4Λ2 e−2m|x|

)

Dispersion relation: ω± = ±
√
− Z11

Z00 k ⇒
∣∣ dω
dk

∣∣ > 1

Group velocity exceeds the speed of light.

Looking for a physical difference between static and boosted classical solutions

Classical instabilities = tachions arise as det Zµν change its sign

det Zµν
boost = det ΛµρΛνσZρσ

static = det Zµν
static < 0

⇓
The solution φ̃ is classically stable in any frame.
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Quantum instability

Looking for a quantum instability

As Z 00 change its sign in a boosted frame ⇒ Ghosts appear!

Z 00 = 1− M2

4Λ2
γ2(3β2 − 1) e−2mγ|x+βt| < 0

⇓
Critical boost factor γ > Λ

√
2

M
emγ|x+βt|

The trajectory of classical solution φ̃
should be close to x = −βt

x

x = −βt

t

φ̃
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Quantum instability

Quantize excitations Sξ =
∫

d2x
[

1
2
Zµν∂µξ ∂νξ

]
on the background Zµν

boost

High frequency regime: mξ = 0; Zµνboost = const

Looking for evolution of negative energy modes

Add interaction with scalar field χ: Sχ =
∫

d2x

[
1
2
(∂µχ ∂

µχ)− m2
χ

2
χ2 + g

2
ξχχ

]

Triples ξχχ are created from vacuum as Z 00 < 0

Required hierarchy of parameters:

mχ < mξγ � k � Λ ; mξ � M ; g M
m ξ

� m2
χ

x

t

φ̃

Background decay rate & energy loss rate

Γ ∼ dE

dt
∼ g 2

4πm2
ξγ

2
.

m4
χ

Λ2

Integrals saturated in IR Lorentz invariance is violated!
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Quantum instability

Naive estimation for 4D

Sχ =

∫
d2x

[
1

2
(∂µχ ∂

µχ)−
m2
χ

2
χ2 +

g ′

2
ξ(∂µχ∂

µχ)

]
This simulates coupling g′

2
ξ2χ2 in 4D as it have the same dimensionality.

Background decay rate

Γ ∼ g ′
2

32π
Λ2

Energy loss rate

dE

dt
∼ g ′

2

32π

Λ3

mγ

Integrals saturated in UV

This can be very high and probably could destroy the classical solution.
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Stress-energy tensor pathology

Expect a divergence of T φ̃
µν(ξ) as γ → γcritical

Below γcritical : T φ̃boosted

µν (ξ) = T φ̃static

µν (ξ) = finite , because of Lorentz covariance

Looking for accelerated solution φ̃

No need for external force, all we need is a coupling to dynamical source

Lint = Mδ(x)φ → Lint =
G

4

(
ψ2

kink − υ2
)2

φ

Kink-antikink pairs are producing from vacuum and accelerating

Lψ =
1

2
(∂µψ)2 − λ

4

(
ψ2 − υ2

)2

− ε(ψ − υ)

Take effective metric in a form

Zµν =

(
1− t2/α2 −t2/α2

−t2/α2 −1− t2/α2

)
; Sξ =

∫
d2x Zµν∂µξ ∂νξ

Solve the EOM ∂µ[Zµν∂νξ] = 0 with an ansatz ξ = ξ(t) eikx

ξ(t, x) = c1 e
−ik(t−x) +c2 e

−ik(t−x−α log α+t
α−t

)

Quantize ξ regarding Zµν as “curved” background
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Now we are able to use curved space QFT methods!

Renormalize Tµν vacuum expectation value using point splitting method and
Schwinger–DeWitt technique

〈0|T ren.
µν |0〉 =

1

4
lim
x→x′

Dµν(x , x ′)
(

G (1)
ex. (x , x ′)− G

(1)
pert.(x , x ′)

)
;

where we use Hadamar function

G (1)(x , x ′) = 〈0|{ξ(x), ξ(x ′)}|0〉

An exact function

G (1)
ex. (x , x ′) =

∞∫
0

dk

2π
√

k2 + m2

(
e−ik(t−t′−x+x′) + e

−ik(t−t′−x+x′−α log
(α+t)(α−t′)
(α−t)(α+t′) )

)
And a perturbative one

G
(1)
pert.(x , x ′) =

∞∫
0

dk

2π
√

k2 + m2

(
e−ik(t̄−x̄) + e−ik(t̄+x̄)

)
The perturbation theory by (x̄ − x̄ ′) with respect to riemannian normal
coordinates x̄µ

Zµν(x̄) = ηµν +
1

3
Rµνρσ(x̄ ′)x̄ρx̄σ + ...
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A direct calculation gives

G (1)
ren. = lim

x→x′
[G (1)

ex. (x , x ′)− G
(1)
pert.(x , x ′)] = log

[
(α2 − t′

2
)2

α2(α2 + t′2)

]
+ regular terms

For 〈Tµν〉 the divergence is even worse, for example

〈0|T ren.
00 (x ′)|0〉 =

t′
6 − t′

4
α2 + 6t′

2
α4 − 5α6

24α6(α2 − t′2)
+ regular terms

The indication for pathology as t′ → α.

As 〈Tµν〉 exceeds Λ2 the effective theory breaks. Nevertheless, it is clear, that
the theory

S =

∫
d2x

[
1

2
(∂µφ ∂

µφ)− m2

2
φ2 − 1

4Λ2
(∂µφ ∂

µφ)2 + Mδ(x)φ

]
is incomplete not only in UV but at any energy scale!

We may guess this conclusion to be true for any theory with superluminal
excitations.

How to make a full description of this kind of theories is a point of discussion...
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A direct calculation gives

G (1)
ren. = lim

x→x′
[G (1)

ex. (x , x ′)− G
(1)
pert.(x , x ′)] = log

[
(α2 − t′

2
)2

α2(α2 + t′2)

]
+ regular terms
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〈0|T ren.
00 (x ′)|0〉 =

t′
6 − t′

4
α2 + 6t′

2
α4 − 5α6

24α6(α2 − t′2)
+ regular terms
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1
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µφ)2 + Mδ(x)φ

]
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Conclusions & Discussion

In the toy model with superluminality:

Lorentz invariant action together
with superluminal excitations leads
to Lorentz non-invariant behaviour
of physical solutions.

Stress-energy tensor of the
excitations shows pathology on top
of the physical solution.

⇒

Theory is pathological and we
don’t need to consider it.

As the theory is non-Lorentzian we
need to complete a Lagrangian
with other Lorentz-braking terms.

Consider it as a spontaneous
breaking of Lorentz invariance. We
need to develop a mechanism of
this breaking to understand which
terms can be generated.

This analysis seem to be suitable for other theories that have superluminal
propagation on classical backgrounds.

Thank you!
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