Dressing black holes
with Galileons

Eugeny Babichev
LPT, Orsay

based on
ARXIV: 1312.3204

with C.Charmousis

QUARKS 2014



Galileons

many faces of the same model (l)

Monge-Ampere equation
AU Uy — uiy) + Bz, + Cuyy + Duy, + E =0

- to find a surface with a prescribed Gaussian curvature
- optimizing transportation costs

Monge'1784, Ampere'1820
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many faces of the same model (l)
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\ . Monge'1784, Ampere'1820
Monge-Ampere equation ° g

AU Uy — uiy) + Buy, + Cugy + Duyy + E =0

- to find a surface with a prescribed Gaussian curvature
- optimizing transportation costs

N J

4 A

The most generic scalar-tensor theory in 4D, whose equations of =~ Homdeski'1974
motion contain ho more than second derivatives

(no Ostrogradski ghost)
S = /d‘laﬁF 9,09,0%g, ¢, 0¢, 8] Elg,09,0%g, ¢, 0p,0%¢] =0
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many faces of the same model (l)
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Monge-Ampére equation Monge™1784, Ampere'1820
AU Uy — uiy) + Bz, + Cuyy + Duy, + E =0
- to find a surface with a prescribed Gaussian curvature
- optimizing transportation costs
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The most generic scalar-tensor theory in 4D, whose equations of ~ Horndeski1974
motion contain no more than second derivatives
(no Ostrogradski ghost)
S = /d4xF 19, 09,0%g,, 00, 0% Elg,0g,0%g, ¢, 0p,0%p] = 0
\ J
4 )
“Universal field equations” Fairlie et al'1991
»Cn — Fn(f)’gp)Wn_l, W() =1 El = (8@)2 — W1 —= LY —
W, =EL, Ly = (09)’Dp — ELy = (Op)? — (VVi)?




Galileons

many faces of the same model ()

DGP: brane model of gravity Dvali et 200
Particular limit of the theory (decoupling limit) gives scalar field Lagrangian,
Luty et al'03
M3, 1 1
T Prupv o 2 Iy N |
»CDGP — 1 h (gh),uu 3(87’(‘) 2h TW/ i MPT('T
direct coupling to
l matter
(Op)* = (VVe)*
Monge-Ampére type




Galileons

many faces of the same model ()

-
Generalization of DGP scalar:  Nicolis et al'09
1=5
El — Tr,
£7T — Z Ci£’i7 1
1=1 Lo = —5 ,ﬂra“’n,
L:i ~ 7'('7: 1 5
£3 = —5 ((97'(') |:|’7'('7
1 1
Ly = —Z(Dw)z(‘?,m@“ﬂ + §D7T8M7T8,,7T(9“8’/7T + ...
1
Ly = —E(Dw)gﬁuﬂﬁuﬂ + g(DW)28M7T5’,/7T5’MaV7T + ...




Galileons

many faces of the same model (V)

-
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Lo = K (X)
£3 — G(S) (X) Q

Li= G |(

Covariant Galileon: adding non-minimal scalar-matter coupling to flat Galileon.

Deffayet et al'09
+ many other works

Shift-symmetric version:

0)° = (VV@)*| + RGW(X),

L5 =GR (xX) |(

0)’ =30 (VV§)* +2(VV)*| = 66, V'V o G (X)

-

Decoupling limit of de Rham-Gabadadze-Tolley model of massive gravity

De Rham,
Gabadadze’10




Bllack holes are bald

- Gravitational collapse...

- black holes eat or expel surrounding matter

- their stationary phase is characterized by a limited number of charges
- and no details

- black holes are bald.

No hair arguments/theorems dictate that adding degrees of
freedom lead to trivial (GR) or singular solutions.

For example in the standard scalar-tensor theories black hole
solutions are GR black holes with constant scalar.



Example of hairy black hole:

T he BBIVIEB solution

Conformally Coupled scalar’: Bocharova et al’70, Bekenstein’74

1 0" 1 2 4
g,ul/agb /\/7<16 G §aoc¢8 ¢_ER¢ )d L

Static spherically symmetric (non-trivial) solution:

2 2
ds? = — (1— 2) a2 | ar s (d92 + sin? Hdgpz)
’ (1-m)°

r

with secondary scalar hair: 3

¢ =

m
A7G'r —m

Note: the geometry is that of extremal RN

the scalar field is unbounded at r=m



No hair for Galileons:
Hui & Nicolis"1=2

Take a shift-symmetric scalar coupled to gravity L(V¢, VV¢,...)

.
2. There is a Noether current J*
3. Equation of motion for the scalar V,J* =0
2
4. Static spherically symmetric metric  {s? = —h(r)dt* 1 ;ZZ ; L 2 d0?
r
and time-independent scalar ¢ = ¢(r)
. 9
5. Compute the scalar quantity J?2 — T J* = g (J7)
6. Require .J? to be finite, at the horizon J" =0
1 1
/. ByEOM v _ Jo= —9, (vV/—gJ%) = —0, (/—qgJ") =0
gt Vet = g0 Ve
const
— J" = >»J" =0 everywhere
/—g )4

For particular theories one can argue that J" = V" ¢(r) — ¢(r) = const



No hair for Galileons:
Hui & Nicolis"1=2

Indeed for canonical scalar field J"=V"¢(r) = ¢(r) = const

For other Galileons the proof is more tricky...

Our idea is to use the loopholes:

. J =V"¢(r) 7% ¢(r) = const

2. o(r) = o=20o(t,r)



Nodel

Action and E0\V1Is

Action S = /d4x\/?g [CR —2A —n (aqb)Q + B8G"Y0,00,¢

® The action is invariant under ® — ¢ + const

® Scalar field equation can be written as a current conservation

V,Jt=0, J'=ng"" — BG"")0,¢
® Metric equations of motion:

CG,uz/ — T <a,u¢au¢ — %guu(8¢)2> + guuA

+ g ((09)*Gp + 2P0 VoV

010008 VIV 6V Y 00) = 0 Pau = = 3 €afso

]%pavé

€Cuv~é



Nodel

the Ansastze and assumptions

Let us assume the following

® Ansatze for metric: s = —h(r)dt2 | L r2d0)?

® Ansatze for scalar: o(t,r) =qt +P(r)

® Number of independent functions:3  [1)(r), h(r), f(r)]
® Number of independent equations:4  [Ey, Ey., Epp, Eyl
® Avoiding no-hair theorem: [SG"" — ng"" =0
Oy (\/—th) + O, (\/ —ng) =0 - EOM for scalar is satisfied

Also (tr)-component of the metric equation is satisfied



Regularity™?

(B +nr?)h
B(rh)’

For q # 0 the current is non-zero, so is J? diverging at the horizon ?

5Grr_ngrr:()%f:

(2777°h — 2B8h" — (B + 777°2)h”) q

In fact no, because Jt =
r(rh)’?

J? =guJ'Jt =0  unless (rh)" =0 (extremal black hole)

4 N
Need to solve two ODFE’s, the (rr) and (tt) component of the metric equation.

The hypothesis is consistent, moreover the current is ok at the horizon.
N J




Nodel

Solving the remaining E0IVIs

® From (rr)-component we find

B \/; 2 2\ 1./ )‘22/1/2
s (8w = S )

Y =:

A= (n+ BA

® Note thatfor = A =0 and no time-dependence, the scalar is trivial

® And finally, (tt)-component gives h(r) via,

k1 E(r)
fW”—‘?+;/5+nﬂW

and q*B(B + nr*)? — (28 + (2¢n — A) 7“2) k 4+ Cok®/? = 0

Any solution of the algebraic equation for k = k(r) gives full
solution to the system !



Examples:

solution wuith static scalar

J?° =0  everywhere
B MmN A
r 382(n+ A

| A2 arctan(r/n/0)
4C°n? — A2 7“\/77/76 |

s P2 (208 + (20 — \r?)’
842 = N2)(B +nr2?)3h

Current is ok at the horizon, but the scalar field is diverging (also its derivative)

0



Examples

stealth solution

e Consider S = /d4x\/jg CR+ BGH0,00,9)

¢ Weobtain f(r)=h(r)=1-— g

¢i:qt::qﬂ{2\/7+lo \\;jL?} b0

Schwarzschild geometry with a non-trivial scalar

Regularity of the scalar ?



Examples

stealth solution

gbi:qt:qﬂ{z\[ﬂo ?\\/F_} b0

looks diverging at the horizon
but the time coordinate is not good there.

Consider EF coordinates instead

v =1+ /(fh)‘l/er — ds® = —hdv? 4 2+/h/ f dvdr + r*dQ?

O =(q {v —1r 4+ 2/ur — 2ulog <\/f+ 1)} + const
!

The scalar is regular



Examples

Schvvarzschild-Einstein black hole

(n+pA=0

h:1—%, f:(1—%) <1+%2>

Black hole with the Einstein static universe asymptotic



Examples
Schvvarzschild-de Sitter black hole

S [ day=g[cR 20— (00)° + 56" 0,60,

for ¢*=((n+ BA)/(Bn)

SalES

M 9 /
— h=1— — - —
f=nh T—|—3T W -

Schwarzschild-de Sitter black hole

Aeg = —(n/B The solution is valid only if A > Ay

Solution self tunes vacuum cosmological constant but has "action
induced” effective cosmological constant



CONCLUSION

+

Time-dependent scalar field

*

Avoid the no-hair theorems by tuning to zero the r-component of
the current.

+

GR and non-GR black holes with a non-trivial and regular scalar.

*

The method can be applied to other Galileons [Kobayashi and
Tanahashi’ 4]

4+ Stability?



