Effect of intermediate Minkowskian evolution on CMB

bispectrum

S. Mironov
INR RAS \& ITEP

Suzdal, June, 7th, 2014
based on arXiv:1312.7808 (S.M., S.Ramazanov, V.Rubakov)

- Perturbations in the Universe are approximately Gaussian and have flat spectrum
- Perturbations in the Universe are approximately Gaussian and have flat spectrum
- First property suggests they originate from amplified vacuum fluctuations of weakly coupled quantum field
- Perturbations in the Universe are approximately Gaussian and have flat spectrum
- First property suggests they originate from amplified vacuum fluctuations of weakly coupled quantum field
- Flatness may be due to some symmetry
- Perturbations in the Universe are approximately Gaussian and have flat spectrum
- First property suggests they originate from amplified vacuum fluctuations of weakly coupled quantum field
- Flatness may be due to some symmetry
- There should be some early-Universe model
- Perturbations in the Universe are approximately Gaussian and have flat spectrum
- First property suggests they originate from amplified vacuum fluctuations of weakly coupled quantum field
- Flatness may be due to some symmetry
- There should be some early-Universe model
- inflation (many types)
- Perturbations in the Universe are approximately Gaussian and have flat spectrum
- First property suggests they originate from amplified vacuum fluctuations of weakly coupled quantum field
- Flatness may be due to some symmetry
- There should be some early-Universe model
- inflation (many types)
- conformal rolling, galilean Genesis
- Perturbations in the Universe are approximately Gaussian and have flat spectrum
- First property suggests they originate from amplified vacuum fluctuations of weakly coupled quantum field
- Flatness may be due to some symmetry
- There should be some early-Universe model
- inflation (many types)
- conformal rolling, galilean Genesis
- ekpyrosis, starting, bouncing
- Perturbations in the Universe are approximately Gaussian and have flat spectrum
- First property suggests they originate from amplified vacuum fluctuations of weakly coupled quantum field
- Flatness may be due to some symmetry
- There should be some early-Universe model
- inflation (many types)
- conformal rolling, galilean Genesis
- ekpyrosis, starting, bouncing
- every model has specific features (tilt, statistical anisotropy, non-gaussianity)
- We are studying how any of this non-gaussianity is changed due to an additional stage
- We are studying how any of this non-gaussianity is changed due to an additional stage
- Conformal rolling example:
- We are studying how any of this non-gaussianity is changed due to an additional stage
- Conformal rolling example:

- We are studying how any of this non-gaussianity is changed due to an additional stage
- Conformal rolling example:

by the end of the rolling, perturbations of interest already have flat spectrum (and special form of non-Gaussianity)

There are two natural possibilities for the perturbations:

There are two natural possibilities for the perturbations: they are superhorizon and remain until the hot epoch

There are two natural possibilities for the perturbations:
they are superhorizon and remain until the hot epoch
thus perturbation do not evolve, form of non-Gaussianity is not changed

There are two natural possibilities for the perturbations:

- they are superhorizon and remain until the hot epoch thus perturbation do not evolve, form of non-Gaussianity is not changed
they have a period of subhorizon evolution before the hot stage

There are two natural possibilities for the perturbations:

- they are superhorizon and remain until the hot epoch thus perturbation do not evolve, form of non-Gaussianity is not changed
they have a period of subhorizon evolution before the hot stage perturbations oscillate in nearly Minkowski space-time

There are two natural possibilities for the perturbations:

- they are superhorizon and remain until the hot epoch
thus perturbation do not evolve, form of non-Gaussianity is not changed
they have a period of subhorizon evolution before the hot stage perturbations oscillate in nearly Minkowski space-time [otherwise spectrum will be grossly modified]

There are two natural possibilities for the perturbations:

- they are superhorizon and remain until the hot epoch
thus perturbation do not evolve, form of non-Gaussianity is not changed
- they have a period of subhorizon evolution before the hot stage perturbations oscillate in nearly Minkowski space-time [otherwise spectrum will be grossly modified]
- we consider the second situation
we assume perturbations to be massless and non-interacting during the Minkowski stage

$$
\delta \theta(\mathbf{k}, \eta)=\delta \theta\left(\mathbf{k}, \eta_{*}\right) \cos k\left(\eta_{*}-\eta\right)
$$

we assume perturbations to be massless and non-interacting during the Minkowski stage

$$
\delta \theta(\mathbf{k}, \eta)=\delta \theta\left(\mathbf{k}, \eta_{*}\right) \cos k\left(\eta_{*}-\eta\right)
$$

or after horizon exit (time of the exit $\eta_{e x}=0$)

$$
\delta \theta(\mathbf{k})=\delta \theta\left(\mathbf{k}, \eta_{*}\right) \cos k \eta_{*}
$$

we assume perturbations to be massless and non-interacting during the Minkowski stage

$$
\delta \theta(\mathbf{k}, \eta)=\delta \theta\left(\mathbf{k}, \eta_{*}\right) \cos k\left(\eta_{*}-\eta\right)
$$

or after horizon exit (time of the exit $\eta_{e x}=0$)

$$
\delta \theta(\mathbf{k})=\delta \theta\left(\mathbf{k}, \eta_{*}\right) \cos k \eta_{*}
$$

let us present a correlator in terms of the primordial Newtonian potential

$$
\begin{gathered}
\left\langle\Phi\left(\mathbf{k}_{1}\right) \Phi\left(\mathbf{k}_{2}\right) \Phi\left(\mathbf{k}_{3}\right)\right\rangle= \\
=\left(\frac{\pi \mathcal{P}_{\Phi}}{2}\right)^{3 / 2} A\left(k_{1}, k_{2}, k_{3}\right) \delta\left(\sum_{i} \mathbf{k}_{i}\right) \cos \left(k_{1} \eta_{*}\right) \cos \left(k_{2} \eta_{*}\right) \cos \left(k_{3} \eta_{*}\right)
\end{gathered}
$$

$A\left(k_{1}, k_{2}, k_{3}\right)$ is initial shape function

$$
a_{l m}=\int d \mathbf{n} \delta T(\mathbf{n}) Y_{l m}^{*}(\mathbf{n})
$$

$$
\begin{gathered}
a_{l m}=\int d \mathbf{n} \delta T(\mathbf{n}) Y_{l m}^{*}(\mathbf{n}) \\
a_{l m}=4 \pi i^{\prime} \int \frac{d \mathbf{k}}{(2 \pi)^{3 / 2}} \Delta_{l}\left(k \eta_{0}\right) \Phi(\mathbf{k}) Y_{l m}^{*}(\hat{\mathbf{k}})
\end{gathered}
$$

here $\Delta_{l}\left(k \eta_{0}\right)$ are standard CMB transfer functions, η_{0} is the present horizon radius, $\hat{\mathbf{k}}$ is the direction of the momentum \mathbf{k}.

$$
\begin{gathered}
a_{l m}=\int d \mathbf{n} \delta T(\mathbf{n}) Y_{l m}^{*}(\mathbf{n}) \\
a_{l m}=4 \pi i^{\prime} \int \frac{d \mathbf{k}}{(2 \pi)^{3 / 2}} \Delta_{l}\left(k \eta_{0}\right) \Phi(\mathbf{k}) Y_{l m}^{*}(\hat{\mathbf{k}})
\end{gathered}
$$

here $\Delta_{l}\left(k \eta_{0}\right)$ are standard CMB transfer functions, η_{0} is the present horizon radius, $\hat{\mathbf{k}}$ is the direction of the momentum \mathbf{k}.

- Recall that $\Delta_{l}(y) \propto j_{l}(y)$, where j_{l} is the spherical Bessel function

$$
\begin{gathered}
a_{l m}=\int d \mathbf{n} \delta T(\mathbf{n}) Y_{l m}^{*}(\mathbf{n}) \\
a_{l m}=4 \pi i^{\prime} \int \frac{d \mathbf{k}}{(2 \pi)^{3 / 2}} \Delta_{l}\left(k \eta_{0}\right) \Phi(\mathbf{k}) Y_{l m}^{*}(\hat{\mathbf{k}})
\end{gathered}
$$

here $\Delta_{l}\left(k \eta_{0}\right)$ are standard CMB transfer functions, η_{0} is the present horizon radius, $\hat{\mathbf{k}}$ is the direction of the momentum \mathbf{k}.

- Recall that $\Delta_{l}(y) \propto j_{l}(y)$, where j_{l} is the spherical Bessel function let us denote: $\quad \mathbf{y}_{i} \equiv \mathbf{k}_{i} \eta_{0}, z \equiv-\frac{\eta_{*}}{\eta_{0}}, A\left(y_{1}, y_{2}, y_{3}\right) \equiv \frac{A\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, k_{3}\right)}{\eta_{0}^{6}}$

$$
\begin{gathered}
a_{l m}=\int d \mathbf{n} \delta T(\mathbf{n}) Y_{l m}^{*}(\mathbf{n}) \\
a_{l m}=4 \pi i^{\prime} \int \frac{d \mathbf{k}}{(2 \pi)^{3 / 2}} \Delta_{l}\left(k \eta_{0}\right) \Phi(\mathbf{k}) Y_{l m}^{*}(\hat{\mathbf{k}})
\end{gathered}
$$

here $\Delta_{l}\left(k \eta_{0}\right)$ are standard CMB transfer functions, η_{0} is the present horizon radius, $\hat{\mathbf{k}}$ is the direction of the momentum \mathbf{k}.

- Recall that $\Delta_{l}(y) \propto j_{l}(y)$, where j_{l} is the spherical Bessel function let us denote: $\quad \mathbf{y}_{i} \equiv \mathbf{k}_{i} \eta_{0}, z \equiv-\frac{\eta_{*}}{\eta_{0}}, A\left(y_{1}, y_{2}, y_{3}\right) \equiv \frac{A\left(k_{1}, \boldsymbol{k}_{2}, k_{3}\right)}{\eta_{0}^{6}}$ we assume the ordering $l_{1} \leq l_{2} \leq l_{3}$ in what follows

$$
\begin{gathered}
\left\langle a_{1} m_{1} a_{2} m_{2} a_{3} m_{3}\right\rangle=i^{k_{1}+l_{2}+l_{3}} \mathcal{P}_{\Phi}^{3 / 2} \int d \mathbf{y}_{1} d \mathbf{y}_{2} \Delta_{1_{1}}\left(y_{1}\right) \Delta_{l_{2}}\left(y_{2}\right) \Delta_{l_{3}}\left(\left|\mathbf{y}_{1}+\mathbf{y}_{2}\right|\right) \times \\
\times Y_{l_{1} m_{1}}^{*}\left(\theta_{1}, \phi_{1}\right) Y_{l_{2} m_{2}}^{*}\left(\theta_{2}, \phi_{2}\right) Y_{13}^{*}\left(m_{3}\left(\theta_{3}, \phi_{3}\right) \times\right. \\
\times \cos \left(y_{1} z\right) \cos \left(y_{2} z\right) \cos \left(\left|\mathbf{y}_{1}+\mathbf{y}_{2}\right| z\right) A\left(y_{1}, y_{2}, y_{3}\right)
\end{gathered}
$$

$$
\begin{gathered}
\left\langle a_{1} m_{1} a_{2} m_{2} a_{13} m_{3}\right\rangle=i^{k_{1}+l_{2}+l_{3}} \mathcal{P}_{\Phi}^{3 / 2} \int d \mathbf{y}_{1} d \mathbf{y}_{2} \Delta_{l_{1}}\left(y_{1}\right) \Delta_{l_{2}}\left(y_{2}\right) \Delta_{l_{3}}\left(\left|\mathbf{y}_{1}+\mathbf{y}_{2}\right|\right) \times \\
\times Y_{l_{1} m_{1}}^{*}\left(\theta_{1}, \phi_{1}\right) Y_{l_{2} m_{2}}^{*}\left(\theta_{2}, \phi_{2}\right) Y_{13}^{*} m_{3}\left(\theta_{3}, \phi_{3}\right) \times \\
\times \cos \left(y_{1} z\right) \cos \left(y_{2} z\right) \cos \left(\left|\mathbf{y}_{1}+\mathbf{y}_{2}\right| z\right) A\left(y_{1}, y_{2}, y_{3}\right)
\end{gathered}
$$

we discuss two regimes.

$$
\begin{gathered}
\left\langle a_{1} m_{1} a l_{l_{2} m_{2}} a_{l_{3} m_{3}}\right\rangle=i^{l_{1}+l_{2}+l_{3}} \mathcal{P}_{\Phi}^{3 / 2} \int d \mathbf{y}_{1} d \mathbf{y}_{2} \Delta_{l_{1}}\left(y_{1}\right) \Delta_{l_{2}}\left(y_{2}\right) \Delta_{l_{3}}\left(\left|\mathbf{y}_{1}+\mathbf{y}_{2}\right|\right) \times \\
\times Y_{l_{1} m_{1}}^{*}\left(\theta_{1}, \phi_{1}\right) Y_{l_{2} m_{2}}^{*}\left(\theta_{2}, \phi_{2}\right) Y_{l_{3} m_{3}}^{*}\left(\theta_{3}, \phi_{3}\right) \times \\
\times \cos \left(y_{1} z\right) \cos \left(y_{2} z\right) \cos \left(\left|\mathbf{y}_{1}+\mathbf{y}_{2}\right| z\right) A\left(y_{1}, y_{2}, y_{3}\right)
\end{gathered}
$$

we discuss two regimes.

- first one: saddle point contribution directly from cosine (spherical functions are assumed to be slow functions)

$$
\begin{gathered}
\left\langle a_{l_{1} m_{1}} a l_{l_{2} m_{2}} a_{l_{3} m_{3}}\right\rangle=i^{l_{1}+l_{2}+l_{3}} \mathcal{P}_{\Phi}^{3 / 2} \int d \mathbf{y}_{1} d \mathbf{y}_{2} \Delta_{l_{1}}\left(y_{1}\right) \Delta_{l_{2}}\left(y_{2}\right) \Delta_{l_{3}}\left(\left|\mathbf{y}_{1}+\mathbf{y}_{2}\right|\right) \times \\
\times Y_{l_{1} m_{1}}^{*}\left(\theta_{1}, \phi_{1}\right) Y_{l_{2} m_{2}}^{*}\left(\theta_{2}, \phi_{2}\right) Y_{l_{3} m_{3}}^{*}\left(\theta_{3}, \phi_{3}\right) \times \\
\times \cos \left(y_{1} z\right) \cos \left(y_{2} z\right) \cos \left(\left|\mathbf{y}_{1}+\mathbf{y}_{2}\right| z\right) A\left(y_{1}, y_{2}, y_{3}\right)
\end{gathered}
$$

we discuss two regimes.

- first one: saddle point contribution directly from cosine (spherical functions are assumed to be slow functions)
- second one is more general: we use approximation for spherical functions

$$
Y_{l m}(\theta, \phi)=\frac{1}{\pi \sqrt{\sin \theta}} \cos \left[\left(I+\frac{1}{2}\right) \theta-\frac{\pi}{4}+\frac{\pi m}{2}\right] e^{i m \phi}+\mathcal{O}\left(\frac{1}{l}\right)
$$

In general case the answer is

$$
\begin{gathered}
\left\langle a_{l_{1} m_{1}} a_{l_{2} m_{2}} a l_{3} m_{3}\right\rangle=i^{l_{1}+l_{2}+l_{3}} \cdot \frac{\pi \mathcal{P}_{\phi}^{3 / 2}}{4} \cdot B_{l_{2} m_{2} ; l_{3} m_{3}}^{l_{1} m_{1}} \times \\
\times \int d y_{1} d y_{2} \cdot y_{1}^{2} \cdot y_{2}^{2} \cdot \Delta_{l_{1}}\left(y_{1}\right) \Delta_{l_{2}}\left(y_{2}\right) \Delta_{l_{3}}\left(y_{1}+y_{2}\right) \cdot A\left(y_{1}, y_{2}, y_{1}+y_{2}\right) \times \\
\times \frac{2\left(y_{1}+y_{2}\right)}{z y_{1} y_{2}} \cdot \sin \left\{\frac{1}{2} \cdot \frac{y_{2}^{2} l_{1}^{2}+y_{1}^{2} l_{2}^{2}}{y_{1} y_{2}\left(y_{1}+y_{2}\right) z}\right\} \cdot \cos \left\{\frac{l_{1} l_{2}}{\left(y_{1}+y_{2}\right) z}\right\} \times \\
\times\left[1-\cot \left\{\frac{1}{2} \cdot \frac{y_{2}^{2} l_{1}^{2}+y_{1}^{2} l_{2}^{2}}{y_{1} y_{2}\left(y_{1}+y_{2}\right) z}\right\} \cdot \tan \left\{\frac{l_{1} l_{2}}{\left(y_{1}+y_{2}\right) z}\right\} \cdot \frac{B_{l_{1},-1 ; l_{3} 0}^{l_{1}}}{B_{l_{2} 0 ; l_{3} 0}^{l_{1} 0}}\right] \\
+\left(l_{1}, m_{1} \leftrightarrow l_{3}, m_{3}\right)+\left(l_{2}, m_{2} \leftrightarrow l_{3}, m_{3}\right)
\end{gathered}
$$

In general case the answer is

$$
\begin{gathered}
\left\langle a_{1} m_{1} a l_{2} m_{2} a l_{3} m_{3}\right\rangle=i^{l_{1}+l_{2}+l_{3}} \cdot \frac{\pi \mathcal{P}_{\phi}^{3 / 2}}{4} \cdot B_{l_{2} m_{2} ; l_{3} m_{3}}^{l_{1} m_{1}} \times \\
\times \int d y_{1} d y_{2} \cdot y_{1}^{2} \cdot y_{2}^{2} \cdot \Delta_{l_{1}}\left(y_{1}\right) \Delta_{l_{2}}\left(y_{2}\right) \Delta_{l_{3}}\left(y_{1}+y_{2}\right) \cdot A\left(y_{1}, y_{2}, y_{1}+y_{2}\right) \times \\
\times \frac{2\left(y_{1}+y_{2}\right)}{z y_{1} y_{2}} \cdot \sin \left\{\frac{1}{2} \cdot \frac{y_{2}^{2} l_{1}^{2}+y_{1}^{2} l_{2}^{2}}{y_{1} y_{2}\left(y_{1}+y_{2}\right) z}\right\} \cdot \cos \left\{\frac{l_{1} l_{2}}{\left(y_{1}+y_{2}\right) z}\right\} \times \\
\times\left[1-\cot \left\{\frac{1}{2} \cdot \frac{y_{2}^{2} l_{1}^{2}+y_{1}^{2} l_{2}^{2}}{y_{1} y_{2}\left(y_{1}+y_{2}\right) z}\right\} \cdot \tan \left\{\frac{l_{1} l_{2}}{\left(y_{1}+y_{2}\right) z}\right\} \cdot \frac{B_{l_{1},-1 ; l_{3} 0}^{l_{1}}}{B_{l_{2} 0 ; l_{3} 0}^{l_{1} 0}}\right] \\
+\left(l_{1}, m_{1} \leftrightarrow l_{3}, m_{3}\right)+\left(l_{2}, m_{2} \leftrightarrow l_{3}, m_{3}\right)
\end{gathered}
$$

let us proceed to the qualitative results
bispectrum is suppresed by a duration of intermediate stage: $\eta_{0}^{2} /\left|\eta_{*}\right|^{2}$ or $\eta_{0} /\left|\eta_{*}\right|$, depending on a regime
bispectrum is suppresed by a duration of intermediate stage: $\eta_{0}^{2} /\left|\eta_{*}\right|^{2}$ or $\eta_{0} /\left|\eta_{*}\right|$, depending on a regime

The bispectrum vanishes for $I_{1}+I_{2}<l_{3}$ and undergoes oscillations as function of $\Delta I=I_{1}+I_{2}-I_{3}>0$ with roughly constant amplitude.
bispectrum is suppresed by a duration of intermediate stage: $\eta_{0}^{2} /\left|\eta_{*}\right|^{2}$ or $\eta_{0} /\left|\eta_{*}\right|$, depending on a regime

The bispectrum vanishes for $I_{1}+I_{2}<l_{3}$ and undergoes oscillations as function of $\Delta I=I_{1}+I_{2}-I_{3}>0$ with roughly constant amplitude. [The origin of oscillations can be traced back to oscillations in the CMB transfer functions]
bispectrum is suppresed by a duration of intermediate stage: $\eta_{0}^{2} /\left|\eta_{*}\right|^{2}$ or $\eta_{0} /\left|\eta_{*}\right|$, depending on a regime

The bispectrum vanishes for $I_{1}+I_{2}<l_{3}$ and undergoes oscillations as function of $\Delta I=I_{1}+I_{2}-I_{3}>0$ with roughly constant amplitude. [The origin of oscillations can be traced back to oscillations in the CMB transfer functions]
the fact, that amplitude is approximately constant is quite non-trivial and important for discriminating the models we discussed in this paper from inflationary scenarios, some of which predict the oscillatory behaviour of the bispectrum analogous to ours, but strongly peaked in flattened triangle limit.

THANK YOU FOR YOUR ATTENTION!

