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Perturbations in the Universe are approximately Gaussian and have


at spectrum

- First property suggests they originate from ampli�ed vacuum


uctuations of weakly coupled quantum �eld

- Flatness may be due to some symmetry

There should be some early-Universe model

- in
ation (many types)

- conformal rolling, galilean Genesis

- ekpyrosis, starting, bouncing

every model has speci�c features (tilt, statistical anisotropy,

non-gaussianity)
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We are studying how any of this non-gaussianity is changed due to an

additional stage

Conformal rolling example:

by the end of the rolling, perturbations of interest already have 
at

spectrum (and special form of non-Gaussianity)
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There are two natural possibilities for the perturbations:

- they are superhorizon and remain until the hot epoch

thus perturbation do not evolve, form of non-Gaussianity is not

changed

- they have a period of subhorizon evolution before the hot stage

perturbations oscillate in nearly Minkowski space-time

[otherwise spectrum will be grossly modi�ed]

we consider the second situation
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we assume perturbations to be massless and non-interacting during

the Minkowski stage

δθ(k, η) = δθ(k, η∗) cos k(η∗ − η)

or after horizon exit (time of the exit ηex = 0)

δθ(k) = δθ(k, η∗) cos kη∗

let us present a correlator in terms of the primordial Newtonian

potential

〈Φ(k1)Φ(k2)Φ(k3)〉 =

=

(
πPΦ

2

)3/2
A(k1, k2, k3)δ

(∑
i

ki

)
cos(k1η∗) cos(k2η∗) cos(k3η∗)

A(k1, k2, k3) is initial shape function
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alm =

∫
dnδT (n)Y ∗

lm(n)

alm = 4πi l
∫

dk

(2π)3/2
∆l(kη0)Φ(k)Y ∗

lm(k̂)

here ∆l(kη0) are standard CMB transfer functions,

η0 is the present horizon radius,

k̂ is the direction of the momentum k.

- Recall that ∆l(y) ∝ jl(y), where jl is the spherical Bessel function

let us denote: yi ≡ kiη0, z ≡ −η∗
η0
, A(y1, y2, y3) ≡ A(k1,k2,k3)

η60

we assume the ordering l1 ≤ l2 ≤ l3 in what follows
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〈al1m1al2m2al3m3〉 = i l1+l2+l3P3/2Φ

∫
dy1dy2∆l1(y1)∆l2(y2)∆l3(|y1+y2|)×

×Y ∗
l1m1

(θ1, φ1)Y ∗
l2m2

(θ2, φ2)Y ∗
l3m3

(θ3, φ3)×

× cos(y1z) cos(y2z) cos(|y1 + y2|z)A(y1, y2, y3)

we discuss two regimes.

- �rst one: saddle point contribution directly from cosine (spherical

functions are assumed to be slow functions)

- second one is more general: we use approximation for spherical

functions

Ylm(θ, φ) =
1

π
√
sin θ

cos

[(
l +

1

2

)
θ − π

4
+
πm

2

]
e imφ +O

(
1

l

)
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In general case the answer is

〈al1m1al2m2al3m3〉 = i l1+l2+l3 ·
πP3/2Φ

4
· B l1m1

l2m2;l3m3
×

×
∫

dy1dy2 · y21 · y22 ·∆l1(y1)∆l2(y2)∆l3(y1 + y2) · A(y1, y2, y1 + y2)×

×2(y1 + y2)

zy1y2
· sin

{1
2
· y2

2
l2
1

+ y2
1
l2
2

y1y2(y1 + y2)z

}
· cos

{ l1l2

(y1 + y2)z

}
×

×
[
1− cot

{1
2
· y2

2
l2
1

+ y2
1
l2
2

y1y2(y1 + y2)z

}
· tan

{ l1l2

(y1 + y2)z

}
·
B

l1,1
l2,−1;l30

B
l10

l20;l30

]
+(l1,m1 ↔ l3,m3) + (l2,m2 ↔ l3,m3)

let us proceed to the qualitative results
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bispectrum is suppresed by a duration of intermediate stage: η2
0
/|η∗|2

or η0/|η∗|, depending on a regime

The bispectrum vanishes for l1 + l2 < l3 and undergoes oscillations as

function of ∆l = l1 + l2 − l3 > 0 with roughly constant amplitude.

[The origin of oscillations can be traced back to oscillations in the

CMB transfer functions]

the fact, that amplitude is approximately constant is quite non-trivial

and important for discriminating the models we discussed in this

paper from in
ationary scenarios, some of which predict the

oscillatory behaviour of the bispectrum analogous to ours, but

strongly peaked in 
attened triangle limit.
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THANK YOU FOR YOUR ATTENTION!
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