Q-tubes in a piece-wise parabolic potential

Andrey Shkerin Institute for Nuclear Research

QUARKS

Suzdal, 2014

Action

Consider (3+1)-dim complex scalar field with action

$$S = \int d^4x \left(\partial_\mu \Phi^* \partial^\mu \Phi - V \left(\Phi^* \Phi \right) \right)$$

Ansatz for Q-tube in cylindrical coordinates (r, φ, z) is $\Phi(r, \varphi, t) = F(r)e^{i\omega t}e^{in\varphi}$

Where F(r) - smooth real function, with good behavior at origin and infinity, ω - real parameter,

n - integer parameter

Conserved quantities:

$$E = \int d^3x T_{tt}, \quad T_{tt} = \left(\omega^2 + \frac{n^2}{r^2}\right) F^2 + \left(\frac{dF}{dr}\right)^2 + V(F^2)$$
$$Q = -i \int d^3x \left(\Phi^* \dot{\Phi} - \dot{\Phi^*} \Phi\right) = \int d^3x 2\omega F^2$$
$$J = nQ$$
$$\frac{d^2F}{dr^2} + \frac{1}{r} \frac{dF}{dr} - \frac{n^2}{r^2} F + \omega^2 F = \frac{dV}{dF^2} F.$$

Equation of motion:

Potential and solution

Choice the following expression for *V*:

$$V(|\Phi|^2) = M^2 |\Phi|^2 \theta \left(1 - \frac{|\Phi|^2}{v^2}\right) + (m^2 |\Phi|^2 + \Lambda) \theta \left(\frac{|\Phi|^2}{v^2} - 1\right)$$

Where Λ provides continuity at $|\Phi|^2 = v^2$: $\Lambda = v^2 (M^2 - m^2)$

Equation of motion then:

$$r^{2}\frac{d^{2}F}{dr^{2}} + r\frac{dF}{dr} + F\left(r^{2}\left(\omega^{2} - U\right) - n^{2}\right) = 0 \qquad \qquad U = M^{2} \quad \text{for} \quad F^{2} < v^{2}$$
$$U = m^{2} \quad \text{for} \quad F^{2} > v^{2}$$

Its solutions are Bessel functions in each region of constant U.

They are fixed by requirements of regularity at origin and infinity and smoothness of F.

Structure of solutions

We obtain constraints on ω :

$$m < \omega < M, \quad m^2 \ge 0$$
$$0 \le \omega < M, \quad m^2 < 0$$

 $r_1 < r < r_2, \quad U = m^2:$ $F(r) = C_2 J_n \left(\sqrt{\omega^2 - m^2} r\right) + C_3 Y_n \left(\sqrt{\omega^2 - m^2} r\right)$

Asymptotes of the solution:

$$F(0) = F'(0) = \dots = F^{(n-1)}(0) = 0,$$

 $F(r) \to 0, r \to \infty$

Properties of solutions

This property is very known to hold for Q-ball solutions too.

Classical stability

Equation of motion following from the general action (we suppose Φ does not depend on z):

$$r^{2}\frac{d^{2}\Phi}{dr^{2}} + r\frac{d\Phi}{dr} + \frac{d^{2}\Phi}{d\phi^{2}} - r^{2}\frac{d^{2}\Phi}{dt^{2}} = r^{2}\Phi\frac{dV}{d|\Phi|^{2}}$$

Search solution in the form: $\Phi = \Phi_0 + h$, where Φ_0 - Q-tube solution,

 $h = h(r, \varphi, t)$ - small perturbation

Choice the ansatz for perturbations in the form:
$$h = e^{i\omega t + in\phi} \sum_{l=0}^{\infty} \left(c_1^l e^{i(\alpha t + l\phi)} + c_2^{l*} e^{-i(\alpha^* t + l\phi)} \right)$$
Q-tube background
Q-tube background
Functions of r
$$\alpha = -i\gamma + \gamma', \qquad \gamma, \gamma' \in \mathbb{R}.$$

It changes the angular momentum of the tube ٠

Linearized equations then:

Except for the points $F^2 = v^2$ they are Bessel equations!

$$r^{2}\frac{d^{2}c_{1}}{dr^{2}} + r\frac{dc_{1}}{dr} - c_{1}\left[r^{2}\left(\left(\gamma + i(\omega + \gamma')\right)^{2} + U\right) + (n+l)^{2}\right] = \frac{r^{2}F^{2}}{v^{2}}\left(m^{2} - M^{2}\right)\delta\left(\frac{F^{2}}{v^{2}} - 1\right)\left(c_{1} + c_{2}\right),$$

$$r^{2}\frac{d^{2}c_{2}}{dr^{2}} + r\frac{dc_{2}}{dr} - c_{2}\left[r^{2}\left(\left(\gamma - i(\omega - \gamma')\right)^{2} + U\right) + (n-l)^{2}\right] = \frac{r^{2}F^{2}}{v^{2}}\left(m^{2} - M^{2}\right)\delta\left(\frac{F^{2}}{v^{2}} - 1\right)\left(c_{1} + c_{2}\right),$$

Existence of solutions

Consider the tube with *n=0*.

After imposing the regularity requirements at the origin and infinity we rest with

 $C_1 c_{1,left}, C_3 c_{2,left} - \text{Solutions at} \quad r < r_0$ $C_2 c_{1,right}, C_4 c_{2,right} - \text{Solutions at} \quad r > r_0$

Matching at the point $r = r_0$ leads to:

$$\begin{split} C_1 c_{1,left}(r_0) - C_2 c_{1,right}(r_0) &= 0, \\ C_3 c_{2,left}(r_0) - C_4 c_{2,right}(r_0) &= 0, \\ C_2 c_{1,right}'(r_0) - C_1 c_{1,left}'(r_0) - A \left(C_1 c_{1,left}(r_0) + C_3 c_{2,left}(r_0) \right) &= 0, \\ C_4 c_{2,right}'(r_0) - C_3 c_{2,left}'(r_0) - A \left(C_1 c_{1,left}(r_0) + C_3 c_{2,left}(r_0) \right) &= 0, \\ A &= \frac{v \left(m^2 - M^2 \right)}{2|F'(r_0)|}. \end{split}$$
 Equations on the constants $C_{1,2,3,4}$

Growing modes exists if the determinant of this system, $\Delta(\gamma, \gamma'; l)$ equals to 0 for some $\gamma > 0, \gamma', l$.

If *n>0*, the number of solutions of the perturbation equations is doubled as well as the number of equations in the system.

Perturbations of tubes with n=0

Fix background Q-tube.

Search for the solutions of the equation $\Delta(\gamma, \gamma'; l) = 0$ with $\gamma > 0$, keeping $\gamma' = 0$.

$$c_{1,2,left} = J_{\pm l} \left(r \sqrt{\left(\omega \mp i\gamma\right)^2 - m^2} \right),$$

$$c_{1,2,right} = H_{\pm l}^{(1)} \left(r \sqrt{\left(\omega \mp i\gamma\right)^2 - M^2} \right)$$

Asymptotes of Δ :

$$\begin{array}{c} \gamma \to \infty \\ \gamma \gg |m|, M \end{array}$$

$$c_{1,2,left} = e^{\pm \frac{i\pi l}{2}} I_l(r\gamma) + O(\sqrt{\gamma}),$$

$$c_{1,2,right} = \frac{2i}{\pi} e^{\pm \frac{i\pi l}{2}} K_l(r\gamma) + O(\sqrt{\gamma})$$

$$Re\Delta(\gamma) = \frac{1}{r_0^2} \left(\frac{|A|}{\gamma} - 1\right), \quad Im\Delta(\gamma) = 0.$$

 $|A| \sim |F'(r_0)|^{-1}
ightarrow \infty$ when $\omega
ightarrow M$

Upper branches of *E*(*Q*)-plots are unstable with $\gamma \rightarrow \infty$ when $\omega \rightarrow M$

This result does not depend on *I*.

We know some solutions of perturbation equations which have $\gamma = 0$

U(1) invariance $h \sim i\Phi_0, l = 0$

Breaking of translational symmetry

Δ

$$(0,0;0) = \Delta(0,0;1) = 0$$

$$\gamma \rightarrow 0$$

Perturbations of tubes with *n=0*

We see that sign Re $\Delta_{\gamma}^{ll}(0,0;0) = \operatorname{sign} \partial^2 E / \partial Q^2$, Im $\Delta(\gamma,0;0) = 0, \forall \gamma$

Since $\operatorname{Re}\Delta(\gamma,0;0) < 0$, $\gamma \to \infty$, the growing modes with $\gamma' = l = 0$ exists for the Q-tubes living on the upper and left (if any) branches of E(Q)-plots

They are unstable!

In addition, we have no any new roots of the equation $\Delta(\gamma, 0; l) = 0$ for any *l>0*.

Perturbations of tubes with *n>0*

The set of solutions is now

$$c_{1,2,left} = J_{n\pm l} \left(r \sqrt{\left(\omega \mp i\gamma\right)^2 - M^2} \right), \quad \mathbf{r} < \mathbf{r}_1$$
$$c_{1,2,right} = H_{n\pm l}^{(1)} \left(r \sqrt{\left(\omega \mp i\gamma\right)^2 - M^2} \right), \quad \mathbf{r} > \mathbf{r}_2$$

$$\begin{aligned} c_{1,2,middle1} &= J_{n\pm l} \left(r \sqrt{\left(\omega \mp i\gamma\right)^2 - m^2} \right), \\ c_{1,2,middle2} &= H_{n\pm l}^{(1)} \left(r \sqrt{\left(\omega \mp i\gamma\right)^2 - m^2} \right), \end{aligned} \qquad r_1 < r < r_2 \end{aligned}$$

The following analysis lies closely to the case n=0.

Again, sign Re $\Delta_{\gamma}^{ll}(0,0;0) = \text{sign } \partial^2 E / \partial Q^2$, Im $\Delta(\gamma,0;0) = 0$, $\forall \gamma$ Re $\Delta(\gamma,0;0) < 0$, $\gamma \to \infty$ The upper and the left (in any) branches of Q-tubes are unstable against perturbations with $\gamma' = l = 0$

We still have no new roots of the equation $\Delta(\gamma, 0; l) = 0$ for any *l>0*.

Perturbations with $\gamma' \neq 0$

OK, we have investigated stability of Q-tubes against perturbations with $\gamma' = 0$.

All solutions have l = 0, i.e. they do not change the angular momentum of the initial Q-tube. What about perturbations with $\gamma' \neq 0$?

Transitions between tubes with different n?

Perturbations with $\gamma' \neq 0$

Comparing the energy scale of perturbations γ , γ' to the energy density of Q-tube *E*, we are sure about validity of classical consideration.

Conclusion

- Using the piece-wise parabolic potential, we constructed analytical soliton solutions and investigated their properties that turned out to be similar to those of Q-balls.
- Using the piece-wise parabolic potential, we obtained linearized equations of motion. Solving them, we found solutions, responsible for classical instability of Q-tubes. We found that:
 - All Q-tubes, living on the upper (and the left, if any) branches of E(Q)-dependences, are unstable against perturbations with l = 0, $\gamma' = 0$, and the lower branches are stable against them;
 - All Q-tubes with n > 0, including those living on the lower branches, become unstable against perturbations with l > 0, $\gamma' \neq 0$;
- We could not find instabilities in the sector of Q-tubes with n = 0 which have l > 0.
 In particular, we did not find growing modes under the lower branch of n = 0 tubes. It may signalize the validity of the stability criterion ∂²E / ∂Q² > 0 and true stability for nonrotating tubes.

Thank you for attention!