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Action

Consider (3+1)-dim complex scalar field with action
= /d4$ (0,070"D =V (*D))
Ansatz for Q-tube in cylindrical coordinates (I, ®,2) is ®(r,p,t) = F(r)e'”e"

Where F(r) - smooth real function, with good behavior at origin and infinity,
@ - real parameter,
n -integer parameter
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Conserved quantities: E=[dTy., Ty= (w 12) F? ((;F) +V (F?)
r
Q — _i/dgr ((I) (I) (I)* /dal‘)wFQ
J =n@)
PPF  1dF n? dV
Equation of motion: - T FiwF=—F
dr? N rdr 12 i dF?



Potential and solution

Choice the following expression for V:
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Where A provides continuity at ‘CI)‘Z =v: A= V2(|\/| 2 - m2)
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Equation of motion then:

CA2F dF U=M? for F?<v?
r ——|— +F(r2 (wg—l.f)—-ng):[]

dr? dr U=m’ for F*>v°
Its solutions are Bessel functions in each region of constant U.

They are fixed by requirements of regularity at origin and infinity and smoothness of F.




Structure of solutions
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) i <r< = :
We obtain constraints on @: L<r<r, U=m

m<o<M, m*>0 F(r)=C,3, (Vo -mir)+CyY, (Vor -mr)

O<w<M, m? <0 Asymptotes of the solution:

F(O)=F'(0)=..=F ™"(0) =0,
F(r)—>0, ro>ow
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Properties of solutions
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=w Q This property is very known to hold for Q-ball solutions too.
do do
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Classical stability

Equation of motion following from the general action (we suppose @ does not depend on z):

5 A2P dd 2P 5 A2 P . dV
r + T + — =7 = 1
dr? dr  dd? dt? d|D|?

Search solution in the form: ® =®,+h , where @, - Q-tube solution,

h =h(r,,1) - small perturbation
oo
Choice the ansatz for perturbations in the form: /, = plwtting Z (cll ei(a”l@ -+ cé*e_i(a*#rl@)
7 =~
Q-tube background Functions of r

* It separates the variables, _ , ,
= =17+, W*WGR

* It changes the angular momentum of the tube

2 d201 dCl

Linearized equations then: P 4 o 72 (7 +i(w +’Y’))2 +U)+ (n+1)?] =
g ' r?EF? F?
— 1)2 (mQ—MQ)é(F—l (Cl+82>,
Except for the points F’ =V yd%cy  dey ) 2 5
they are Bessel equations! "z + TR [r 2;(3 —iw=7") +F(2]) +(n =17 =
r




Existence of solutions

Consider the tube with n=0.

After imposing the regularity requirements at the origin and infinity we rest with

CiC, et C3Co et - Solutionsat r<fr,

C,C.rights CaCorigne - Solutionsat 1>,
Matching at the point r=r, leads to:
0101,zeft(7‘0) - szfl,m'gh,t( 0)
Cscatepe(ro) — Cucarigne(ro) =
Col igni(10) — C1¢4 1o (10) — A(Chrergese(ro) + CSCQJeft(TO)) =0,
Cycly yigni(10) — C3chy 1y (r0) — (01(1 teft(10) + Ccae:(19)) = 0,
_v(m?®— M?)

2[F" ()]

Equations on the constants C,, 5,

Growing modes exists if the determinant of this system, Aly,751) equals to O for some 7 > 0,741

If n>0, the number of solutions of the perturbation equations is doubled as well as the number of

equations in the system.
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Perturbations of tubes with n=0

Fix background Q-tube.
Search for the solutions of the equation A(y, ;1) =0 with y > 0, keeping y'=0.

Clodeft = Jui (-r\/(w == 7;7)2 _ mz) ?
C1.2,Tight = Hill) (’I"'\/(w F ?:'_\/)2 _ A[Q)

Asymptotes of A: y —> 0 y —0
y>|m[,M _ , ,
We know some solutions of perturbation equations
Clodeft = ei%lll(’r"}/) -+ O(ﬁ)n which have Yy = O
2@ T i
C1.2,right = ?eiTiKz(’f"Y) + O/7) U(1) invariance s h~i0,, =0
Breaking of translational symmetr
ReA(y) = lz (ﬂ - 1) . ImA(y) = 0. & Y Iy
AT ) h~®, , |=1

Al ~ [F'(rg)]™" — oc  when @—M

Upper branches of E(Q)-plots are unstable with A(0,0;0) =A(0,0;1) =0
y —>o when o > M

This result does not depend on /.



Perturbations of tubes with n=0
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A(y,0;0) for the different values of @
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We see that Sign Re A’ (0,0;0) =sign 6°E/0Q* ImA(y,0;0) =0, Vy

Since ReA(y,0;0) <0, ¥ — o, the growing modes with y'=1 =0 exists for the Q-tubes living on
the upper and left (if any) branches of E(Q)-plots

mmmm) They are unstable!

In addition, we have no any new roots of the equation A(y,0;1) =0for any />0.
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Perturbations of tubes with n>0

The set of solutions is now

: 2
Crodeft = ot (*r\/(w F 17)2 — M?) ., r<n C1.2,middlel = Jni (T\/(w Fiy) — m2> .
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The following analysis lies closely to the case n=0.
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Again, signRe A’ (0,0;0) =sign 0°E/9Q%, ImA(y,0;0)=0,Vy ReA(y,0;0)<0, y > oo
‘ The upper and the left (in any) branches of Q-tubes are unstable against perturbations with
7/' = I = 0

We still have no new roots of the equation A(y,0;1) =0 for any />0.
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Perturbations with y ' =0

OK, we have investigated stability of Q-tubes against perturbations with y'=0 .

All solutions have | =0, i.e. they do not change the angular momentum of the initial Q-tube.

What about perturbations with ¥'#0?

® cusp point

7 e cusp point
5 w—-M

TTees oa0 ons 020 025 030 T o o 0w on a0 )
Family of roots of the equation A(y,7";1) =0 for the Family of roots of the equation A(y,7";1) =0 for the
different values of /. different values of m.

Ghown the example with n=2, m=0, M=v=1. Shown the example with n=2, I=1, M=v=1. )

Transitions between tubes with different n?
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Perturbations with y ' =0
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Roots of A(y,7";1) =0 for the different values of /, E and Q in the same range of @.
in dependence on@ .

Comparing the energy scale of perturbations 7:7 ' to the energy density of Q-tube E, we are sure
about validity of classical consideration.
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Conclusion

Using the piece-wise parabolic potential, we constructed analytical soliton solutions and
investigated their properties that turned out to be similar to those of Q-balls.

Using the piece-wise parabolic potential, we obtained linearized equations of motion. Solving them,
we found solutions, responsible for classical instability of Q-tubes. We found that:

- All Q-tubes, living on the upper (and the left, if any) branches of E(Q)-dependences, are unstable
against perturbations with | =0, ¥'=0, and the lower branches are stable against them;

- All Q-tubes with n >0, including those living on the lower branches, become unstable against
perturbations with | >0, y'#0;

We could not find instabilities in the sector of Q-tubes with n =0 which have | > 0.
In particular, we did not find growing modes under the lower branch of N =0 tubes. It may
signalize the validity of the stability criterion 9°E / 9Q? > 0 and true stability for nonrotating tubes.
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Thank you for attention!



