Q-tubes in a piece-wise parabolic potential

Andrey Shkerin
Institute for Nuclear Research

QUARKS

Action

Consider (3+1)-dim complex scalar field with action
$S=\int d^{4} x\left(\partial_{\mu} \Phi^{*} \partial^{\mu} \Phi-V\left(\Phi^{*} \Phi\right)\right)$
Ansatz for Q-tube in cylindrical coordinates (r, φ, z) is $\Phi(r, \varphi, t)=F(r) \mathrm{e}^{i \omega t} \mathrm{e}^{\mathrm{in} \varphi}$

Where $F(r)$ - smooth real function, with good behavior at origin and infinity,
ω - real parameter,
n - integer parameter
Conserved quantities: $\quad E=\int d^{3} x T_{t t}, \quad T_{t t}=\left(\omega^{2}+\frac{n^{2}}{r^{2}}\right) F^{2}+\left(\frac{d F}{d r}\right)^{2}+V\left(F^{2}\right)$

$$
Q=-i \int d^{3} x\left(\Phi^{*} \dot{\Phi}-\dot{\Phi^{*}} \Phi\right)=\int d^{3} x 2 \omega F^{2}
$$

$$
J=n Q
$$

Equation of motion: $\quad \frac{d^{2} F}{d r^{2}}+\frac{1}{r} \frac{d F}{d r}-\frac{n^{2}}{r^{2}} F+\omega^{2} F=\frac{d V}{d F^{2}} F$.

Potential and solution

Choice the following expression for V :

$$
V\left(|\Phi|^{2}\right)=M^{2}|\Phi|^{2} \theta\left(1-\frac{|\Phi|^{2}}{v^{2}}\right)+\left(m^{2}|\Phi|^{2}+\Lambda\right) \theta\left(\frac{|\Phi|^{2}}{v^{2}}-1\right)
$$

Where Λ provides continuity at $|\Phi|^{2}=v^{2}: \quad \Lambda=v^{2}\left(M^{2}-m^{2}\right)$

Equation of motion then:
$r^{2} \frac{d^{2} F}{d r^{2}}+r \frac{d F}{d r}+F\left(r^{2}\left(\omega^{2}-U\right)-n^{2}\right)=0$

$$
\begin{array}{lll}
U=M^{2} & \text { for } & F^{2}<v^{2} \\
U=m^{2} & \text { for } & F^{2}>v^{2}
\end{array}
$$

Its solutions are Bessel functions in each region of constant U.
They are fixed by requirements of regularity at origin and infinity and smoothness of F.

Structure of solutions

$$
\begin{aligned}
r>r_{0}, & U=M^{2}: \\
r<r_{0}, & F(r) \sim K_{0}\left(\sqrt{M^{2}-\omega^{2}} r\right) \\
m^{2}: & F(r) \sim J_{0}\left(\sqrt{\omega^{2}-m^{2}} r\right)
\end{aligned}
$$

$$
r>r_{2}, \quad U=M^{2}: \quad F(r) \sim K_{n}\left(\sqrt{M^{2}-\omega^{2}} r\right)
$$

$$
r<r_{1}, \quad U=M^{2}: \quad F(r) \sim I_{n}\left(\sqrt{M^{2}-\omega^{2}} r\right)
$$

We obtain constraints on ω :

$$
\begin{array}{cc}
m<\omega<M, & m^{2} \geq 0 \\
0 \leq \omega<M, & m^{2}<0
\end{array}
$$

$$
\begin{aligned}
& r_{1}<r<r_{2}, \quad U=m^{2}: \\
& \quad F(r)=C_{2} J_{n}\left(\sqrt{\omega^{2}-m^{2}} r\right)+C_{3} Y_{n}\left(\sqrt{\omega^{2}-m^{2}} r\right)
\end{aligned}
$$

Asymptotes of the solution:

$$
\begin{gathered}
F(0)=F^{\prime}(0)=\ldots=F^{(n-1)}(0)=0, \\
F(r) \rightarrow 0, \quad r \rightarrow \infty
\end{gathered}
$$

Properties of solutions

$\frac{d E}{d \omega}=\omega \frac{d Q}{d \omega}$ This property is very known to hold for Q-ball solutions too.

Classical stability

Equation of motion following from the general action (we suppose Φ does not depend on z):
$r^{2} \frac{d^{2} \Phi}{d r^{2}}+r \frac{d \Phi}{d r}+\frac{d^{2} \Phi}{d \phi^{2}}-r^{2} \frac{d^{2} \Phi}{d t^{2}}=r^{2} \Phi \frac{d V}{d|\Phi|^{2}}$

Search solution in the form: $\Phi=\Phi_{0}+h$, where Φ_{0} - Q-tube solution,

$$
h=h(r, \varphi, \mathrm{t})-\text { small perturbation }
$$

Choice the ansatz for perturbations in the form: $h=e^{i \omega t+i n \phi} \sum_{l=0}^{\infty}\left(c_{1}^{l} e_{\text {Q-tube background }}^{i(\alpha t+l \phi)}+c_{\pi}^{l *} e^{-i\left(\alpha^{*} t+l \phi\right)}\right)$

- It separates the variables,
- It changes the angular momentum of the tube

$$
\alpha=-i \gamma+\gamma^{\prime}, \quad \gamma, \gamma^{\prime} \in \mathbb{R}
$$

Linearized equations then:

$$
\begin{array}{r}
r^{2} \frac{d^{2} c_{1}}{d r^{2}}+r \frac{d c_{1}}{d r}-c_{1}\left[r^{2}\left(\left(\gamma+i\left(\omega+\gamma^{\prime}\right)\right)^{2}+U\right)+(n+l)^{2}\right]= \\
=\frac{r^{2} F^{2}}{v^{2}}\left(m^{2}-M^{2}\right) \delta\left(\frac{F^{2}}{v^{2}}-1\right)\left(c_{1}+c_{2}\right), \\
r^{2} \frac{d^{2} c_{2}}{d r^{2}}+r \frac{d c_{2}}{d r}-c_{2}\left[r^{2}\left(\left(\gamma-i\left(\omega-\gamma^{\prime}\right)\right)^{2}+U\right)+(n-l)^{2}\right]= \\
\\
=\frac{r^{2} F^{2}}{v^{2}}\left(m^{2}-M^{2}\right) \delta\left(\frac{F^{2}}{v^{2}}-1\right)\left(c_{1}+c_{2}\right),
\end{array}
$$

Except for the points $F^{2}=v^{2}$ they are Bessel equations!

Existence of solutions

Consider the tube with $n=0$.
After imposing the regularity requirements at the origin and infinity we rest with
$C_{1} c_{1, l e f t}, C_{3} c_{2, \text { left }}$

- Solutions at $r<r_{0}$
$C_{2} c_{1, \text { right }}, C_{4} c_{2, \text { right }}$
- Solutions at $r>r_{0}$

Matching at the point $r=r_{0}$ leads to:

$$
\begin{gathered}
C_{1} c_{1, \text { left }}\left(r_{0}\right)-C_{2} c_{1, \text { right }}\left(r_{0}\right)=0, \\
C_{3} c_{2, \text { left }}\left(r_{0}\right)-C_{4} c_{2, \text { right }}\left(r_{0}\right)=0, \\
C_{2} c_{1, \text { right }}^{\prime}\left(r_{0}\right)-C_{1} c_{1, \text { left }}^{\prime}\left(r_{0}\right)-A\left(C_{1} c_{1, \text { left }}\left(r_{0}\right)+C_{3} c_{2, \text { left }}\left(r_{0}\right)\right)=0, \\
C_{4} c_{2, \text { right }}\left(r_{0}\right)-C_{3} c_{2, \text { left }}^{\prime}\left(r_{0}\right)-A\left(C_{1} c_{1, \text { left }}\left(r_{0}\right)+C_{3} c_{2, \text { left }}\left(r_{0}\right)\right)=0, \\
A=\frac{v\left(m^{2}-M^{2}\right)}{2\left|F^{\prime}\left(r_{0}\right)\right|} .
\end{gathered}
$$

Growing modes exists if the determinant of this system, $\Delta\left(\gamma, \gamma^{\prime} ; l\right)$ equals to 0 for some $\gamma>0, \gamma^{\prime}, l$. If $n>0$, the number of solutions of the perturbation equations is doubled as well as the number of equations in the system.

Perturbations of tubes with $n=0$

Fix background Q-tube.
Search for the solutions of the equation $\Delta\left(\gamma, \gamma^{\prime} ; l\right)=0$ with $\gamma>0$, keeping $\gamma^{\prime}=0$.

$$
\begin{aligned}
c_{1,2, l e f t} & =J_{ \pm l}\left(r \sqrt{(\omega \mp i \gamma)^{2}-m^{2}}\right), \\
c_{1,2, r i g h t} & =H_{ \pm l}^{(1)}\left(r \sqrt{(\omega \mp i \gamma)^{2}-M^{2}}\right)
\end{aligned}
$$

Asymptotes of Δ :

$$
\gamma \rightarrow 0
$$

We know some solutions of perturbation equations which have $\gamma=0$
$U(1)$ invariance $\longrightarrow h \sim i \Phi_{0}, \quad l=0$
Breaking of translational symmetry
$\longrightarrow h \sim \Phi_{0, r}^{l}, \quad l=1$
$|A| \sim\left|F^{\prime}\left(r_{0}\right)\right|^{-1} \rightarrow \infty \quad$ when $\omega \rightarrow M$

Upper branches of $E(Q)$-plots are unstable with

$$
\gamma \rightarrow \infty \quad \text { when } \omega \rightarrow M
$$

This result does not depend on $/$.

Perturbations of tubes with $n=0$

We see that $\operatorname{sign} \operatorname{Re} \Delta_{\gamma}^{l l}(0,0 ; 0)=\operatorname{sign} \partial^{2} E / \partial \mathbf{Q}^{2}, \quad \operatorname{Im} \Delta(\gamma, 0 ; 0)=0, \forall \gamma$
Since $\operatorname{Re} \Delta(\gamma, 0 ; 0)<0, \gamma \rightarrow \infty$, the growing modes with $\gamma^{\prime}=l=0$ exists for the Q -tubes living on the upper and left (if any) branches of $E(Q)$-plots

They are unstable!
In addition, we have no any new roots of the equation $\Delta(\gamma, 0 ; l)=0$ for any $l>0$.

Perturbations of tubes with $n>0$

The set of solutions is now

$$
\begin{array}{lll}
c_{1,2, l e f t}=J_{n \pm l}\left(r \sqrt{(\omega \mp i \gamma)^{2}-M^{2}}\right), & r<r_{1} & c_{1,2, \text { middle } 1}=J_{n \pm l}\left(r \sqrt{(\omega \mp i \gamma)^{2}-m^{2}}\right), \\
c_{1,2, \text { right }}=H_{n \pm l}^{(1)}\left(r \sqrt{(\omega \mp i \gamma)^{2}-M^{2}}\right), & r>r_{2} & c_{1,2, \text { middle } 2}=H_{n \pm l}^{(1)}\left(r \sqrt{(\omega \mp i \gamma)^{2}-m^{2}}\right)
\end{array}
$$

The following analysis lies closely to the case $n=0$.

Again, sign $\operatorname{Re} \Delta_{\gamma}^{l}(0,0 ; 0)=\operatorname{sign} \partial^{2} E / \partial \mathbf{Q}^{2}, \quad \operatorname{Im} \Delta(\gamma, 0 ; 0)=0, \forall \gamma \quad \operatorname{Re} \Delta(\gamma, 0 ; 0)<0, \gamma \rightarrow \infty$
\longrightarrow The upper and the left (in any) branches of Q-tubes are unstable against perturbations with

$$
\gamma^{\prime}=l=0
$$

We still have no new roots of the equation $\Delta(\gamma, 0 ; l)=0$ for any $l>0$.

Perturbations with $\gamma^{\prime} \neq 0$

OK, we have investigated stability of Q-tubes against perturbations with $\gamma^{\prime}=0$.
All solutions have $l=0$, i.e. they do not change the angular momentum of the initial Q-tube.
What about perturbations with $\gamma^{\prime} \neq 0$?

Transitions between tubes with different n ?

Perturbations with $\gamma^{\prime} \neq 0$

Roots of $\Delta\left(\gamma, \gamma^{\prime} ; l\right)=0$ for the different values of l,

E and Q in the same range of ω.

Comparing the energy scale of perturbations γ, γ^{\prime} to the energy density of Q -tube E, we are sure about validity of classical consideration.

Conclusion

- Using the piece-wise parabolic potential, we constructed analytical soliton solutions and investigated their properties that turned out to be similar to those of Q-balls.
- Using the piece-wise parabolic potential, we obtained linearized equations of motion. Solving them, we found solutions, responsible for classical instability of Q-tubes. We found that:
- All Q-tubes, living on the upper (and the left, if any) branches of $E(Q)$-dependences, are unstable against perturbations with $l=0, \gamma^{\prime}=0$, and the lower branches are stable against them;
- All Q-tubes with $n>0$, including those living on the lower branches, become unstable against perturbations with $l>0, \gamma^{\prime} \neq 0$;
- We could not find instabilities in the sector of Q-tubes with $n=0$ which have $l>0$. In particular, we did not find growing modes under the lower branch of $n=0$ tubes. It may signalize the validity of the stability criterion $\partial^{2} E / \partial \mathrm{Q}^{2}>0$ and true stability for nonrotating tubes.

Thank you for attention!

