Scaling violation in logarithmic dimensions in
massless scalar quantum field theories.

A. L. Pismenskii

June 7, 2014



Renormalization group equation:
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p is a monentum, g is a renormalized coupling constant (or its
function), (g) is the beta function, v(g) is the anomalous
dimension of field, D is a propagator.

Dimensionless variables:
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where 1 is a parameter of renormalization with the dimension of
mass.
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A solution of the renormalization group equation:
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where g(s, g) is the invariant charge which is defined implicitly by

the equation:
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To find ®(1, g) we have to solve the Dyson equation:

D Y(p,g) = A7 (p) — X(p.g),

where A(p) is the bar propagator, X(p, g) is the self-energy
operator.



Within the minimal subtractions (MS) scheme it holds:
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We introduce another dimensionless variable:
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To find =(1, g), we have to calculate some of the Feynman
diagrams.



It is convinient to introduce the functions p(g) and V(g), such as:

P(g) = ﬁ(lg)
Vig) = 3
Then
Ins = p(g) — p(g)
Or



The asymptotic behavior.
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g(s,g) — g« when Ins — +oo.

g« is a zero of the beta function: ((gs) = 0.
In the logarithmic dimension it holds: (3(g)
g =0. Thatis, g — 0.

A type of asymptotic:

In the main approximation we have:
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If bog > 0, then IR.
If bog < 0, then UV.



Corrections to the main approximation.
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where s; = ep(g)s,



The asymptotic behavior of propagator.
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Suppose, we know the following approximation for the functions

B(g). v(g) and =(1, g):

B(g) = bog® + bsg® + bag* + ...
v(g) = ag+ 0g’+agd+ ...
=(1,g) = a1 + azg2 + ...

The function V(g) is uniquely determined by 2 conditions:

2
—

V'( ) =3¢

(()

Q
| il

Cuﬂ@m)zo



b2C2—b3C1
b3
b2c1 — babacy — bybzcy + bc
+31 2413232 23g2_|_“_
263

C
V(g) = bf In | bog]| + g+

The expression for the propagator in terms of the invariant charge:
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The propagator in terms of the monentum:
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We can try to simplify more the expression by the transformation

s = el'sy.
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If c; # 0, then we take A = (2b3c17b2é562+b231)) 2%

And we receive:
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If ¢ =0, then we have:
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The ¢3 theory in the Euclidian space.
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¢ is a scalar field, X is a coupling constant.
d = 6 (the logarithmic dimension for this theory).
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where ((z) is the Riemann's zeta function, g = 62‘?.

by < 0. If Ais real then g > 0, bpg < 0 and we get the ultraviolet
asymptotic. But one usually takes A to be imaginary that it holds
g < 0 and we obtain the infrared asymptotic.



To find the desired accuracy for the propagator, we have to
compute three Feynman diagrams:
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Line is the bar propagator %, verticle is the coupling constant .
All these diagrams diverge in the logarithmic dimension (d = 6),
and we make the dimensional regularization (d = 6 — 2¢) then the
R-operation. The result is the fillowing:
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where g = 6:1\7, 7 = In4m — g, and g is the Euler’s constant.



The infrared asymptotic of the propagator:
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The O(N)-symmetric ¢* theory in the Euclidian space.
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¢ is an N-componental field, A is a coupling constant, A > 0.

The logarithmic dimension for this theory is d = 4.

The beta function and the anomalous dimension of field have been
computed up to 5 loops:
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where g = 16);2 > 0.

We have by > 0 and g > 0, we therefore get the infrared
asymptotic.



We need the self-energy operator ut to 4 loops:



The result is the following:
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The infrared asymptotic of the propagator.

_ov 1 N+2 1 3(N+2)(3N+14) In|l
D(p,g) =e 2V [1_2(N71_8)2@ : (/\)/(+s) )?|r|122;§|_

9(N+2)(3N+14)2 (In||n52|)2 + 9(N+2)(3N+14)? In||n52|_|_
2(N+8)° (Insp)3 2(N+8)° (Ins)3

+4s(<l\/\/128 5[319N* + 99423 + 116469N? + 607364 N + 1204452+
_l’_
3

—|—168(N+8) T+24(N+8) —384¢(3 )(N+8)(5N+22)](
27(N+2)(3N+14)3 (In|Insi])®  135(N+2)(3N+14)% (In|Insp[)?

Insp)

+ 2(N+8)8 (Insp)* 4(N+-8)8 (ins2)?
W[m/\/4 + 99423 + 115173N2 + 595268\ +

1176228 + 168(N + 8)*7+

+24(N +8)*r% — 384((3)(N + 8)(5N + 22)] 1o -

~ 3ga(n gy [T068N® + 322295\° + 6183232V* + 63882945N° +
3748084302 + 1182947372N + 1567304328+

+96¢(3)(N + 8)(25N3 + 1096 N2 4 9052N + 21984) +
1920¢(5)(N + 8)?(2N2 + 55N + 186)+

+12(N + 8)*(461N2 + 6606 + 25948)7+
+24(N +8)*(63N? +953N +3778)72 + 144(N +8)°73] (In§2)4 + ...




The ¢° theory.
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¢ is a scalar field, A is a coupling constant, A > 0.
The logarithmic dimension is d = 3.

20 1124 1572
B(g)=g2—< +> .

3 15 2
_ 1 5, 2 5
Where g = W);rg > 0.

Using the renormalization group equation we get the
IR-asymptotic.



We need only 1 diagram for ¥:

We obtain:
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The result for the propagator:
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Conclusion.

Using the renormalization group equation, we have calculated the
infrared asymptotic of the propagator for the theories ¢3, ¢* and
#°. The equation includes a beta function and an anomalous
dimension of field. An analysis has shown that these data are not
enough to find the asymptotic behavior of the propagator. We
need also to know a self-energy operator as a function of a
coupling constant with a fixed value of momentum. To find this
function it required to sum Feynman diagrams.

For the ¢3 theory the propagatir in the main approximation is
power with logarithm (scaling is violated), and in the theories ¢*
and ¢° in the main approximation scaling is not violated.
Corrections in all these cases are expressed in terms of the
logarithm and the logarithm logarithm of the momentum. There
are universal terms, which are not changed with the scale
transformation p — ap, and non-universal, which are changed.
Triviality. The ¢* theory with arbitrary N is not trivial (corrections
include logarithms), but in the limit N — oo it becomes trivial. It
is also interesting that the triviality appears with No= —2.



Thank you for your attention!!!



