Isospinning Skyrmions Mareike Haberichter (SMSAS)

QUARKS-2014 18th International Seminar on High Energy Physics Suzdal, Russia In Collaboration with: Richard Battye (UoM) Steffen Krusch (UoK)

- 1. Review of the Skyrme Model
- 2. Classically & Isospinning Skyrmions
- 3. Weaknesses of the Rigid Body Approach
- 4. Numerical Results on isospinning Skyrme solitons beyond the rigid body approach
- 5. Conclusions

The Classical SU(2) Skyrme Model

The Skyrme Lagrangian expressed in terms of the SU(2) matrix $U(t, \mathbf{x})$ and the su(2)-valued right-handed chiral current $R_{\mu} = (\partial_{\mu}U) U^{\dagger}$ $m = 2m_{\pi}/(F_{\pi}e)$

$$L_{\text{Sky}} = \frac{F_{\pi}}{4e} \int \left\{ -\frac{1}{2} \text{Tr} \left(R_{\mu} R^{\mu} \right) + \frac{1}{16} \text{Tr} \left([R_{\mu}, R_{\nu}] [R^{\mu}, R^{\nu}] \right) + \text{m}^{2} \text{Tr} \left(U - \mathbb{1}_{2} \right) \right\} d^{3}x$$

Finite energy configuration: $U(\mathbf{x}) \to \mathbb{1}_2$ for $|\mathbf{x}| \to \infty \Rightarrow |U: S^3 \mapsto SU(2) \cong S^3$

$$\Rightarrow \boxed{B \in \mathbb{Z} = \pi_3 \left(SU(2) \right)}$$

Topological charge:

$$B = -\frac{1}{24\pi^2} \int \epsilon_{ijk} \mathrm{Tr} \left(R_i R_j R_k \right) \, \mathrm{d}^3 \mathrm{x}.$$

9-dim symmetry group:

Translations and rotations in \mathbb{R}^3 : Isospin transformations:

$$\mathbb{R}^3 imes SO(3)^J imes SO(3)^I.$$

 $\mathbf{x}
ightarrow D(A_2)(\mathbf{x} - \mathbf{X}),$
 $U
ightarrow A_1 U A_1^{\dagger}.$

Skyrmions & Nuclei

We are interested in modelling light atomic nuclei by classically (iso)spinning Skyrmion solutions.

Skyrmions:

Skyrmions are topologically stabilsed solutions in a field theory of pions and can be used to model atomic nuclei. Their topologically conserved charge *B* can be identified with the mass or atomic number.

Nuclear states can be characterized by spin and isospin quantum numbers.

Rotation & Isorotation of a static soliton configuration $U_0(\mathbf{x})$:

$$\widehat{U}(\mathbf{x}, t) = A_1(t)U_0[D(A_2(t))(\mathbf{x})]A_1^{\dagger}(t), \quad A_1, A_2 \in SU(2)$$

Classical soliton mass:

$$M = \int \left\{ -\frac{1}{2} \operatorname{Tr} (R_i R_i) - \frac{1}{16} \operatorname{Tr} ([R_i; R_j][R_i, R_j]) + m^2 \operatorname{Tr} (\mathbb{1}_2 - U) \right\} d^3 x,$$

 $R_{i_{\mathbf{A}}} = (\partial_i U_0) U_0^{\dagger}$

Kinematical contribution:

$$T = \frac{1}{2}a_{i}\underbrace{U_{ij}}_{ij}a_{j} - a_{i}\underbrace{W_{ij}}_{j}b_{j} + \frac{1}{2}b_{i}\underbrace{V_{ij}}_{j}b_{j}.$$
Isorotation
Body-fixed angular velocities:

$$a_{j} = -i \mathrm{Tr} \left(\tau_{j} A_{1}^{\dagger} \dot{A}_{1} \right), \qquad b_{j} = i \mathrm{Tr} \left(\tau_{j} \dot{A}_{2} A_{2}^{\dagger} \right).$$

Inertia tensors

The inertia tensors U_{ij} , V_{ij} and W_{ij} are explicitly given by

$$\begin{split} U_{ij} &= -\int \operatorname{Tr}\left(T_i T_j + \frac{1}{4}[R_k, T_i][R_k, T_j]\right) \, \mathrm{d}^D x \,, \\ V_{ij} &= -\int \epsilon_{ilm} \epsilon_{jnp} x_i x_n \operatorname{Tr}\left(R_m R_p + \frac{1}{4}[R_k, R_m][R_k, R_p]\right) \, \mathrm{d}^D x \,, \\ W_{ij} &= \int \epsilon_{jlm} x_l \operatorname{Tr}\left(T_i R_m + \frac{1}{4}[R_k, T_i][R_k, R_m]\right) \, \mathrm{d}^D x \,, \end{split}$$

where $R_k = (\partial_k U_0) U_0^{\dagger}$ is the right-invariant su(2) current and

$$T_i=\frac{i}{2}\left[\tau_i,\,U_0\right]U_0^\dagger,$$

is another su(2) current. The momenta conjugate to a_i and b_i :

$$K_{i} = \frac{\partial T}{\partial a_{i}} = U_{ij}a_{j} - W_{ij}b_{j},$$

$$L_{i} = \frac{\partial T}{\partial b_{i}} = -W_{ij}^{T}a_{j} + V_{ij}b_{j}.$$

Spherically Symmetric Deforming Skyrmions

Battye, Krusch, Sutcliffe (05)

University of

Axially Symmetric Deforming Skyrmions

Battye, Krusch, Sutcliffe (05) Houghton, Magee (06) Fortier, Marleau (08)

Rigid Body Quantization - Predicted Ground States

Lower Charge Skyrmions:

В	$ \mathbf{J}\rangle \mathbf{I} angle_{0}$	$ \mathbf{J} angle \mathbf{I} angle_1$	$ \mathbf{J}\rangle \mathbf{I} angle_2$	Experiment	$ \mathbf{J}\rangle \mathbf{I} angle_{Exp.}$	Match
1	$\left \left \frac{1}{2} \right\rangle \right \left \frac{1}{2} \right\rangle$	$\left \frac{3}{2}\right\rangle \left \frac{1}{2}\right\rangle$	$\left \frac{1}{2}\right\rangle \left \frac{3}{2}\right\rangle$	¦¦H	$\left \frac{1}{2}\right\rangle \left \frac{1}{2}\right\rangle$	\checkmark
2	$ 1\rangle 0\rangle$	3 angle 0 angle	$ 0\rangle 1\rangle$	² ₁ H	$ 1\rangle 0\rangle$	\checkmark
3	$\left \frac{1}{2}\right\rangle \left \frac{1}{2}\right\rangle$	$\left \frac{5}{2}\right\rangle \left \frac{1}{2}\right\rangle$	$\left \frac{3}{2}\right\rangle \left \frac{3}{2}\right\rangle$	³ ₂ He	$\left \frac{1}{2}\right\rangle \left \frac{1}{2}\right\rangle$	\checkmark
4	$ 0\rangle 0\rangle$	4 angle 0 angle	$ 0\rangle 1\rangle$	⁴ ₂ He	$ 0\rangle 0\rangle$	\checkmark

Rigid Body Quantization - Predicted Ground States

Lower Charge Skyrmions:

В	$ {f J} angle {f I} angle_0$	$ \mathbf{J} angle \mathbf{I} angle_1$	$ \mathbf{J}\rangle \mathbf{I}\rangle_2$	Experiment	$ \mathbf{J}\rangle \mathbf{I} angle_{Exp.}$	Match
1	$\left \frac{1}{2}\right\rangle \left \frac{1}{2}\right\rangle$	$\left \frac{3}{2}\right\rangle \left \frac{1}{2}\right\rangle$	$\left \frac{1}{2}\right\rangle \left \frac{3}{2}\right\rangle$	¦¦H	$\left \frac{1}{2}\right\rangle \left \frac{1}{2}\right\rangle$	\checkmark
2	$ 1\rangle 0\rangle$	3 angle 0 angle	$ 0\rangle 1\rangle$	² ₁ H	$ 1\rangle 0\rangle$	\checkmark
3	$\left \frac{1}{2}\right\rangle \left \frac{1}{2}\right\rangle$	$\left \frac{5}{2}\right\rangle \left \frac{1}{2}\right\rangle$	$\left \frac{3}{2}\right\rangle \left \frac{3}{2}\right\rangle$	³ ₂ He	$\left \frac{1}{2}\right\rangle \left \frac{1}{2}\right\rangle$	\checkmark
4	0 angle 0 angle	4 angle 0 angle	$ 0\rangle 1\rangle$	⁴ ₂ He	$ 0\rangle 0\rangle$	\checkmark

Higher Charge Skyrmions:

В	$ \mathbf{J} angle \mathbf{I} angle_0$	$ \mathbf{J} angle \mathbf{I} angle_1$	$ {f J} angle {f I} angle_2$	Experiment	$ {f J} angle {f I} angle_{{f Exp.}}$	Match	
5	$\left \frac{1}{2}\right\rangle \left \frac{1}{2}\right\rangle$	$\left \frac{3}{2}\right\rangle \left \frac{1}{2}\right\rangle$	$\left \frac{1}{2}\right\rangle \left \frac{3}{2}\right\rangle$	⁵ ₂ He	$\left \frac{3}{2}\right\rangle \left \frac{1}{2}\right\rangle$	×	⁵ ₂ He*
5*	$\left \left \frac{5}{2}\right\rangle\right \frac{1}{2}\right\rangle$	$\left \frac{7}{2}\right\rangle \left \frac{1}{2}\right\rangle$	$\left \frac{\overline{3}}{\overline{2}}\right\rangle \left \frac{\overline{3}}{\overline{2}}\right\rangle$	⁵ ₂ He	$\left \frac{3}{2}\right\rangle \left \frac{1}{2}\right\rangle$	×	⁵ ₂ He*
6	$ 1\rangle 0\rangle$	3 angle 0 angle	$ 1\rangle 1\rangle$	⁶ 3Li	$ 1\rangle 0\rangle$	\checkmark	
7	$\left \frac{7}{2}\right\rangle \left \frac{1}{2}\right\rangle$	$\left \frac{13}{2}\right\rangle \left \frac{1}{2}\right\rangle$	$\left \frac{3}{2}\right\rangle \left \frac{3}{2}\right\rangle$	⁷ ₃ Li	$\left \frac{3}{2}\right\rangle \left \frac{1}{2}\right\rangle$	×	⁷ ₃ Li**
8	0 angle 0 angle	$ 2\rangle 0\rangle$	0 angle 1 angle	⁸ ₄ Be	0 angle 0 angle	\checkmark	
9	$\left \frac{1}{2}\right\rangle \left \frac{1}{2}\right\rangle$	$\left \frac{3}{2}\right\rangle \left \frac{1}{2}\right\rangle$	$\left \frac{1}{2}\right\rangle \left \frac{3}{2}\right\rangle$	⁹ ₄ Be	$\left \frac{3}{2}\right\rangle \left \frac{1}{2}\right\rangle$	X	⁹ ₄ Be**
9*	$\left \left \frac{1}{2} \right\rangle \right \left \frac{1}{2} \right\rangle$	$\left \left \frac{5}{2}\right\rangle\right \left \frac{1}{2}\right\rangle$	$\left \frac{3}{2}\right\rangle \left \frac{3}{2}\right\rangle$	⁹ ₄ Be	$\left \frac{3}{2}\right\rangle \left \frac{1}{2}\right\rangle$	X	⁹ ₄ Be**

Krusch (03)

Classically Isospinning Skyrmions

We collect sigma field and triplet of pion fields together in a four component unit vector $\phi = (\sigma, \pi)$:

Classical Skyrmion mass:

$$M = \int \left(\partial_i \phi \cdot \partial_i \phi\right) + \frac{1}{2} \left[\left(\partial_i \phi \cdot \partial_i \phi\right)^2 - \left(\partial_i \phi \cdot \partial_j \phi\right)^2 \right] + 2m^2 (1 - \sigma) d^3 x,$$

Moment of inertia:

$$U_{ij} = 2 \int \left(\phi_d \phi^d \delta_{ij} - \phi_i \phi_j \right) (1 + \partial_k \phi \cdot \partial_k \phi) - \epsilon_{ide} \epsilon_{jfg} \left(\phi^d \partial_k \phi^e \right) \left(\phi^f \partial_k \phi^g \right) \, \mathrm{d}^3 x \, .$$

Uniformly isospinning soliton solutions in Skyrme models are obtained by solving one of the following, precisely equivalent variational problems for ϕ :

- 1. Extremize the pseudoenergy functional $F_{\omega}(\phi) = -L$ for fixed $|\omega|$,
- 2. Extremize the Hamiltonian $H = M_B + \frac{1}{2}K_iU_{ij}^{-1}K_j$ for fixed isospin $K_i = U_{ij}\omega_j$.

The Rational Map Approximation

- Rational map: $R(z) = \frac{p(z)}{q(z)}, \quad R: S^2 \to S^2.$
- Skyrme field Ansatz:

$$U(r, z) = \exp\left[\frac{if(r)}{1+|R|^2} \begin{pmatrix} 1-|R|^2 & 2\bar{R} \\ 2R & |R|^2-1 \end{pmatrix}\right],$$

where $B = \max[\deg(p), \deg(q)].$

 Radial and angular integrals decouple:

$$E = \frac{1}{3\pi} \int \left(r^2 f'^2 + 2B \left(f'^2 + 1 \right) \sin^2 f + \mathcal{I} \frac{\sin^4 f}{r^2} \right) dr, \ 8$$
$$\mathcal{I} = \frac{1}{4\pi} \int \left(\frac{1 + |z|^2}{1 + |R|^2} \left| \frac{dR}{dz} \right| \right)^4 \frac{2i \, dz d\overline{z}}{(1 + |z|^2)^2}.$$

 $\overline{B} = 1, \, \widehat{K} = (0, 0, 1), \, \mu = 1$

Colour Scheme

$$B = 2, \hat{K} = (0, 0, 1)$$

$$\mu = 1 \qquad \mu = 1.5 \qquad \mu = 2$$

University of

$$B = 3, \ \widehat{K} = (0, 0, 1)$$

$$B = 4, \ \widehat{K} = (0, 1, 0)$$

 $\mu = 1$ $\mu = 1.5$ $\mu = 2$

June 7, 2014 | SMSAS | Mareike Haberichter | 16

Compare: Skyrmion Dynamics

Head on collision

Twisted line scattering

Scattering of four Skyrmions (D₄ symmetry)

B = 4

Deviations from the rigid body approximation

$$B = 8, D_{4h} \& D_{6d}, m = 1$$

$$\widehat{\mathbf{K}} = (0, 1, 0)$$
 $\widehat{\mathbf{K}} = (0, 0, 1)$ $\widehat{\mathbf{K}} = (0, 0, 1)$

Break-up of isospinning B = 8 Skyrmion solutions into charge-4 sub-units, the Skyrme model analogue of α -particles.

June 7, 2014 | SMSAS | Mareike Haberichter | 19

B = 1 Skyrmion: Critical frequencies

Figure : Total energy E_{tot} and isospin K for B = 1 soliton solutions in the standard (left) and "new" (right) Skyrme model as function of angular frequency ω . The mass parameter takes the values $\mu = 0.5, 1, 1.5, 2$.

Summary & Outlook

- Classically spinning Skyrmions can be used to model spin and isospin states of nuclei.
- Skyrmions deform as they rotate and isorotate. These "centrifugal" deformations have to be taken into account when approximating nuclei by spinning Skyrmion solutions.

Future Work & Open Questions:

- How well can we approximate nuclear states by classically spinning and isospinning Skyrmion solutions?
- What are the preferred body-fixed axes of rotation? How is the Skyrmion orientated as it spins?
- How to calibrate the Skyrme model?
- Here we only considered isorotations. We neglected completely the kinetic contributions of the inertia tensors V_{ij} and W_{ij} to the total energy!
- As a first step we want to investigate how accurately the observed isopin states, excitation energies and energy spectra of *He-6, Be-10, C-14, O-18 and Ne-22* can be matched by isospinning, deforming Skyrmion solutions.

Thank you for listening!

3D printed B = 4 Skyrmion solution.