Non-Abelian strings and 2D-4D correspondence

Mikhail Shifman and Alexei Yung

1 Introduction

Non-Abelian strings were suggested in $\mathcal{N}=2 \mathrm{U}(\mathrm{N})$ QCD
Hanany, Tong 2003
Auzzi, Bolognesi, Evslin, Konishi, Yung 2003
Shifman Yung 2004
Hanany Tong 2004
Z_{N} Abelian string: Flux directed in the Cartan subalgebra, say for $S O(3)=S U(2) / Z_{2}$

$$
\text { flux } \sim \tau_{3}
$$

Non-Abelian string : Orientational zero modes
Rotation of color flux inside $\mathrm{SU}(\mathrm{N})$.

For $U(N)$ gauge theory in the 4D bulk we have 2D $C P(N-1)$ model on the string

2D-4D correspondence

Most striking example: $\mathcal{N}=2 \mathrm{QCD}$
Coincidence of BPS spectra
$4 \mathrm{D} \mathrm{U}(\mathrm{N}) \mathcal{N}=2 \mathrm{QCD} \quad \Longleftrightarrow \quad 2 \mathrm{D} \mathrm{CP}(N-1)$ model
in the particular
vacuum with maximum
number of condensed
quarks, $r=N$
Observed by Dorey 1998
Explained by Shifman Yung 2004 and Hanany Tong 2004
via non-Abelian strings
Can we generalize this 2D-4D correspondence to other r-vacua of $\mathcal{N}=2 \mathrm{QCD}$?

$2 r$-Vacua

$\mathcal{N}=2$ QCD with gauge group $U(N)=S U(N) \times U(1)$ and N_{f} flavors of fundamental matter - quarks

The field content:
$\mathrm{U}(1)$ gauge field A_{μ} $\operatorname{SU}(N)$ gauge field $A_{\mu}^{a}, a=1, \ldots, N^{2}-1$
complex scalar fields a, and a^{a}

+ fermions
Complex scalar fields $q^{k A}$ and $\tilde{q}_{A k}$ (squarks) + fermions $k=1, \ldots, N$ is the color index, A is the flavor index, $A=1, \ldots, N_{f}$

Mass term for the adjoint chiral field

$$
\mathcal{W}_{\mathrm{br}}=\mu \operatorname{Tr} \Phi^{2},
$$

where

$$
\Phi=\frac{1}{2} \mathcal{A}+T^{a} \mathcal{A}^{a} .
$$

r Vacuum

First r (s)quarks condense,
F-terms in the potential

$$
\left|\tilde{q}_{A} q^{A}+\sqrt{2} \frac{\partial \mathcal{W}_{\mathrm{br}}}{\partial \Phi}\right|^{2}, \quad\left|\left(\sqrt{2} \Phi+m_{A}\right) q^{A}\right|
$$

Adjoint fields:

$$
\langle\operatorname{diag} \Phi\rangle \approx-\frac{1}{\sqrt{2}}\left[m_{1}, \ldots, m_{r}, 0, \ldots, 0\right]
$$

For $r=N U(N)$ gauge group is Higgsed

For $r<N$ classically unbroken gauge group

$$
U(N-r) \quad \rightarrow \quad U(1)^{N-r} \quad \rightarrow \quad U(1)
$$

adjoints
$(N-r-1)$ monopoles

Quark VEV's

$$
\begin{aligned}
\left\langle q^{k A}\right\rangle & =\left\langle\overline{\tilde{q}}^{k A}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{cccccc}
\sqrt{\xi_{1}} & \ldots & 0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \sqrt{\xi_{r}} & 0 & \ldots & 0
\end{array}\right), \\
k & =1, \ldots, r, \quad A=1, \ldots, N_{f},
\end{aligned}
$$

where for $r=N$

$$
\xi_{P} \approx 2 \mu m_{P}, \quad P=1, \ldots, N,
$$

while for $r<N$

$$
\xi_{P} \approx 2 \mu m_{P}, \quad \xi_{N}=0, \quad P=1, \ldots, r .
$$

Color-flavor locking
Both gauge $U(N)$ and flavor $S U(N)$ are broken, however diagonal $S U(N)_{C+F}$ is unbroken if quark masses are equal

$$
\langle q\rangle \rightarrow U\langle q\rangle U^{-1}
$$

3 Non-Abelian strings in $r=N$ vacuum

Example in $U(2)=U(1) \times S U(2)$
Abrikosov-Nielsen-Olesen string:

$$
\begin{gathered}
\left.q\right|_{r \rightarrow \infty} \sim \sqrt{\xi} e^{i \alpha}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
T=4 \pi \xi
\end{gathered}
$$

Non-Abelian string:

$$
\begin{gathered}
\left.q\right|_{r \rightarrow \infty} \sim \sqrt{\xi}\left(\begin{array}{cc}
e^{i \alpha} & 0 \\
0 & 1
\end{array}\right) \\
T=2 \pi \xi
\end{gathered}
$$

Here r and α are polar coordinates in the plane orthogonal to the string axis

String solution breaks $S U(2)_{C+F} \rightarrow 2$ orentational zero modes.

$$
\frac{S U(2)_{C+F}}{U(1)}=C P(1)=O(3)
$$

We have two dimensional $O(3)$ sigma model living on the string world sheet.

$$
S_{(1+1)}=\frac{\beta}{2} \int d t d z\left(\partial_{k} \vec{S}\right)^{2}, \quad \vec{S}^{2}=1
$$

For $U(N)$ gauge group in the bulk we have 2D $C P(N-1)$ model on the string
$\mathrm{CP}(N-1)==\mathrm{U}(1)$ gauge theory in the strong coupling limit

$$
\begin{aligned}
S_{\mathrm{CP}(N-1)} & =\int d^{2} x\left\{\left|\nabla_{\alpha} n^{P}\right|^{2}+\frac{1}{4 e^{2}} F_{\alpha \beta}^{2}+\frac{1}{e^{2}}\left|\partial_{\alpha} \sigma\right|^{2}\right. \\
& \left.+\left|\sigma+m_{P}\right|^{2}\left|n^{P}\right|^{2}+\frac{e^{2}}{2}\left(\left|n^{P}\right|^{2}-2 \beta\right)^{2}\right\},
\end{aligned}
$$

where n^{P} are complex fields $P=1, \ldots, N$,
Condition

$$
\left|n^{P}\right|^{2}=2 \beta,
$$

imposed in the limit $e^{2} \rightarrow \infty$

4 Confined monopoles

Higgs phase for quarks \Longrightarrow confinement of monopoles
Elementary monopoles - junctions of two different strings

Example in $U(2)$

monopole flux $=4 \pi \times \operatorname{diag} \frac{1}{2}\{1,-1\}$

In $2 \mathrm{D} C P(N-1)$ model on the string we have
N vacua $=N Z_{N}$ strings
and kinks interpolating between these vacua

$$
\begin{aligned}
\text { Kinks }= & \text { confined monopoles } \\
& \text { monopore }
\end{aligned}
$$

$$
M^{k i n k}=M^{\text {monopole }}
$$

5 2D-4D correspondence in $r=N$ vacuum

Exact superpotential in $\mathrm{CP}(N-1)$ model

$$
\begin{aligned}
& \mathcal{W}_{\mathrm{CP}}(\sigma)=\frac{1}{4 \pi}\left\{\sum_{P=1}^{N}\left(\sigma+m_{P}\right) \ln \frac{\sigma+m_{P}}{e \Lambda}\right. \\
& \left.-\sum_{K=N+1}^{N_{F}}\left(\sigma+m_{K}\right) \ln \frac{\sigma+m_{K}}{e \Lambda}\right\},
\end{aligned}
$$

Vacuum equation (chiral ring equation)

$$
\prod_{P=1}^{N}\left(\sigma+m_{P}\right)=\Lambda^{(N-\tilde{N})} \prod_{K=N+1}^{N_{f}}\left(\sigma+m_{K}\right)
$$

N roots $\Longrightarrow N$ vacua $\sigma_{P}, P=1, \ldots, N$

Kink masses

$$
M_{P P^{\prime}}^{\mathrm{BPS}}=2\left|\mathcal{W}_{\mathrm{CP}}\left(\sigma_{P^{\prime}}\right)-\mathcal{W}_{\mathrm{CP}}\left(\sigma_{P}\right)\right|, \quad P, P^{\prime}=1, \ldots, N
$$

Compare with monopole masses

$$
\begin{gathered}
M_{P P^{\prime}}^{\text {monopole }}=\left|\frac{\sqrt{2}}{2 \pi i} \oint_{\beta_{P P^{\prime}}} d \lambda_{S W}\right|, \quad P, P^{\prime}=1, \ldots . N \\
M_{P P^{\prime}}^{\text {monopole }}=M_{P P^{\prime}}^{\text {kink }}, \quad P, P^{\prime}=1, \ldots, N
\end{gathered}
$$

6 Quantum deformation

Rewrite identically exact superpotential

$$
\begin{aligned}
& \mathcal{W}^{\mathrm{cl}}(\sigma)=\frac{1}{4 \pi}\left\{2 \operatorname{Tr}\left[\left(\sigma-\sqrt{2} \Phi^{\mathrm{cl}}\right) \ln \frac{\sigma-\sqrt{2} \Phi^{\mathrm{cl}}}{e \Lambda}\right]\right. \\
- & \left.\sum_{A=1}^{N_{f}}\left(\sigma+m_{A}\right) \ln \frac{\sigma+m_{A}}{e \Lambda}\right\}
\end{aligned}
$$

where for $r=N$ vaquum

$$
\left\langle\operatorname{diag} \Phi^{\mathrm{cl}}\right\rangle=-\frac{1}{\sqrt{2}}\left[m_{1}, \ldots, m_{N}\right]
$$

Now we propose that quantum superpotential is

$$
\begin{aligned}
& \mathcal{W}(\sigma)=\frac{1}{4 \pi}\left\{2\left\langle\operatorname{Tr}\left[(\sigma-\sqrt{2} \Phi) \ln \frac{\sigma-\sqrt{2} \Phi}{e \Lambda}\right]\right\rangle\right. \\
- & \left.\sum_{A=1}^{N_{f}}\left(\sigma+m_{A}\right) \ln \frac{\sigma+m_{A}}{e \Lambda}\right\}
\end{aligned}
$$

where quantum average is taken over the bulk theory.

Calculate quantum average over the bulk theory.
Gaiotto, Gukov, Seiberg 2013: method of resolvents

$$
T(\sigma)=\left\langle\operatorname{Tr} \frac{1}{\sigma-\sqrt{2} \Phi}\right\rangle
$$

Cachazo, Seiberg, Witten 2003: exact solution for chiral rings in $\mathcal{N}=1 \mathrm{QCD}$

$$
T(\sigma)_{r=N}=\sum_{P=1}^{N} \frac{1}{\sigma+m_{P}}
$$

For $r=N$ vacuum this gives classical expression

7 World sheet theory for non-Abeliabn

 string in $r=N-1$ vacuumUse Cachazo-Seiberg-Witten solution for resolvent

$$
\begin{aligned}
& \quad \partial_{\sigma} \mathcal{W}(\sigma)=\frac{1}{4 \pi}\left\{\sum_{A=1}^{N-1} \ln \frac{\left(\sigma+m_{A}\right)}{\Lambda}-\sum_{A=N}^{N_{f}} \ln \frac{\left(\sigma+m_{A}\right)}{\Lambda}\right. \\
& \left.+\quad\left(2 N-N_{f}\right) \ln \frac{t}{\Lambda}-\sum_{A=1}^{N-1} \ln \frac{t_{A}}{\Lambda}+\sum_{A=N}^{N_{f}} \ln \frac{t_{A}}{\Lambda}\right\}
\end{aligned}
$$

where

$$
t=\frac{1}{2}\left(\sigma+\sqrt{\sigma^{2}-\frac{4 S}{\mu}}\right), \quad S=\frac{1}{32 \pi^{2}}\left\langle\operatorname{Tr} W_{\alpha} W^{\alpha}\right\rangle
$$

and

$$
t_{A}=\frac{1}{2}\left(\sqrt{\sigma^{2}-\frac{4 S}{\mu}}+\frac{\sigma+\frac{4 S}{\mu m_{A}}}{\sqrt{1-\frac{4 S}{\mu m_{A}^{2}}}}\right)
$$

Bulk instantons produce gaugino condensate
It penetrates into 2D theory on the string and opens a cut in σ plane

8 2D-4D correspondence in $r=N-1$

vacuum

Kink mass

$$
\begin{gathered}
M_{P P^{\prime}}^{\mathrm{kink}}=2\left|\mathcal{W}\left(\sigma_{P^{\prime}}\right)-\mathcal{W}\left(\sigma_{P}\right)\right| \\
M_{P P^{\prime}}^{\mathrm{k} i n k}
\end{gathered}=\left\lvert\, \frac{1}{\pi} \int_{\sigma_{P}}^{\sigma_{P^{\prime}}} d \sigma\left\{\frac{2 N-N_{f}}{2} \frac{\sigma}{\sqrt{\sigma^{2}-\frac{4 S}{\mu}}}\right.\right.
$$

Compare with monopole masses

$$
\begin{gathered}
M_{P P^{\prime}}^{\text {monopole }}=\left|\frac{\sqrt{2}}{2 \pi i} \oint_{\beta_{P P^{\prime}}} d \lambda_{S W}\right|, \quad P, P^{\prime}=1, \ldots . N \\
M_{P P^{\prime}}^{\text {mopopole }}=M_{P P^{\prime}}^{\text {kink }}, \quad P, P^{\prime}=1, \ldots, N
\end{gathered}
$$

9 Example in U(2)

$\mathrm{U}(2)$ gauge theory with $N_{f}=2$
Exact formula for the kink mass in $r=1$ vacuum $\left(m_{1}=m_{2}=m\right)$

$$
M^{\text {kink }}=\left|\frac{1}{2 \pi}\left\{m \ln \frac{m+\sqrt{m^{2}-4 \Lambda^{2}}}{m-\sqrt{m^{2}-4 \Lambda^{2}}}+2 \sqrt{m^{2}-4 \Lambda^{2}}\right\}\right|
$$

Compare with the kink mass in $r=2$ vacuum given by $\mathrm{CP}(1)$ model

$$
M_{r=N}^{\text {kink }}=\left|\frac{1}{2 \pi}\left\{\Delta m \ln \frac{\Delta m+\sqrt{\Delta m^{2}+4 \Lambda^{2}}}{\Delta m-\sqrt{\Delta m^{2}+4 \Lambda^{2}}}-2 \sqrt{\Delta m^{2}+4 \Lambda^{2}}\right\}\right|,
$$

where $\Delta m=m_{1}-m_{2}$

10 Conclusions

- Bulk instantons penetrates into the theory on the non-Abelian string
- 2D-4D correspondence (coincidence of BPS spectra of 2D kinks and 4D monopoles) is still valid in $r=N-1$ vacuum

11 Classical theory on the string in

$$
r=N-1 \text { vacuum }
$$

$$
\begin{aligned}
S_{(2,2)}^{\mathrm{cl}}= & \int d^{2} x\left\{\left|\nabla_{\alpha} n^{P}\right|^{2}+\left|\nabla_{\alpha} n^{N}\right|^{2}+\left|\tilde{\nabla}_{\alpha} \rho\right|^{2}+\left|\nabla_{\alpha} z\right|^{2}+\frac{1}{4 e^{2}} F_{\alpha \beta}^{2}+\frac{1}{e^{2}}\left|\partial_{\alpha} \sigma\right|^{2}\right. \\
+ & \left|\sigma+m_{P}\right|^{2}\left|n^{P}\right|^{2}+\left|\sigma+m_{N}\right|^{2}|\rho|^{2}+|\sigma|^{2}\left|n^{N}\right|^{2}+|\sigma|^{2}|z|^{2} \\
+ & \left.\frac{e^{2}}{2}\left(\left|n^{P}\right|^{2}+\left|n^{N}\right|^{2}+|z|^{2}-|\rho|^{2}-2 \beta\right)^{2}\right\} \\
& P=1, \ldots, N-1 .
\end{aligned}
$$

The physical meaning of the n^{N} and z fields is related to "unwinding" of the $(N-1)$-th string into the N-th string which is, in fact, absent. The coefficient b of this WCP model is equal to the sum of the charges of all charged fields,

$$
b=(N-1)-1+1+1=N
$$

a. Schematic picture of the scalar potential in the theory. The complex variable σ is schematically represented by the horizontal axis. Minima of the potential correspond to elementary non-Abelian strings.

$$
V\left(\sigma_{P}\right)=T_{P}, \quad P=1, \ldots, N
$$

b. The same potential in the limit $\mu=0$

$$
V_{\mathrm{def}}(\sigma)=4 \pi|\mu \sigma|
$$

```
r=N-1 Vacuum
```


a

b

$$
V_{\mathrm{def}}(\sigma)=4 \pi\left|\mu \sqrt{\sigma^{2}-\frac{4 S}{\mu}}\right|
$$

```
r=N Vacuum, \nu=\tilde{N}
```

$$
\xi_{P}=-2 \sqrt{2} \mu e_{P}, \quad P=1, \ldots, N
$$

where e_{P} are the double roots of the Seiberg-Witten curve,

$$
y^{2}=\prod_{P=1}^{N}\left(x-\phi_{P}\right)^{2}-4\left(\frac{\Lambda}{\sqrt{2}}\right)^{N-\tilde{N}} \prod_{A=1}^{N_{f}}\left(x+\frac{m_{A}}{\sqrt{2}}\right)=\prod_{P=1}^{N}\left(x-e_{P}\right)^{2}
$$

At small masses the double roots of the Seiberg-Witten curve are

$$
\sqrt{2} e_{I}=-m_{I+N}, \quad \sqrt{2} e_{J}=\Lambda_{\mathcal{N}=2} \exp \left(\frac{2 \pi i}{N-\tilde{N}} J\right)
$$

for $\tilde{N}<N-1$, where

$$
I=1, \ldots, \tilde{N} \text { and } J=\tilde{N}+1, \ldots, N
$$

The \tilde{N} first roots are determined by the masses of the last \tilde{N} quarks - a reflection of the fact that the non-Abelian sector of the dual theory is not asymptotically free and is at weak coupling in the domain.
\square

$$
\xi_{P}=-2 \sqrt{2} \mu \sqrt{e_{P}^{2}-e_{N}^{2}}, \quad P=1, \ldots, r
$$

Seiberg-Witten curve

$$
y^{2}=\prod_{P=1}^{N-1}\left(x-e_{P}\right)^{2}\left(x-e_{N}^{+}\right)\left(x-e_{N}^{-}\right), \quad e_{N}^{+}+e_{N}^{-}=0
$$

Cachazo, Seiberg, Witten, 2003:

$$
e_{N}^{2}=\frac{2 S}{\mu}, \quad S=\frac{1}{32 \pi^{2}}\left\langle\operatorname{Tr} W_{\alpha} W^{\alpha}\right\rangle
$$

First ν roots at small masses

$$
\sqrt{2} e_{I}=-m_{I+r}, \quad I=1, \ldots, \nu . \quad e_{J} \sim \Lambda_{\mathcal{N}=2}, \quad J=\nu+1, \ldots, r
$$

