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1 Introduction

Non-Abelian strings were suggested in N' = 2 U(N) QCD
Hanany, Tong 2003

Auzzi, Bolognesi, Evslin, Konishi, Yung 2003

Shifman Yung 200/

Hanany Tong 2004

Zn Abelian string: Flux directed in the Cartan subalgebra, say for
SO(3) = SU(2)/7Z,

flux ~ 73

Non-Abelian string : Orientational zero modes'

Rotation of color flux inside SU(N).
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For U(N) gauge theory in the 4D bulk we have 2D C'P(N — 1) model on
the string



2D-4D correspondence I

Most striking example: N = 2 QCD
Coincidence of BPS spectra

4D U(N) N =2 QCD «—=— 2D CP(N — 1) model
in the particular

vacuum with maximum

number of condensed

quarks, r = N
Observed by Dorey 1998
Explained by Shifman Yung 2004 and Hanany Tong 2004

via non-Abelian strings

Can we generalize this 2D-4D correspondence to other r-vacua of

N =2 QCD?



2 7r-Vacua

N =2 QCD with gauge group U(N) = SU(N) x U(1) and
Ny flavors of fundamental matter — quarks

The field content:

U(1) gauge field A,

SU(N) gauge field A%, a=1,..,N* -1
complex scalar fields a, and a“

+ fermions

Complex scalar fields ¢"* and G4, (squarks) + fermions

k=1,...,N is the color index, A is the flavor index, A =1, ..

Mass term for the adjoint chiral field

Wir = 1t Tr &,

where |
(I) — 5 ./4 —|— Ta Aa.

LN



r Vacuum '

First r (s)quarks condense,

F-terms in the potential

9)4%
~ A 9 br
qaq + V2 9%

2

, ‘(\@Cb + mA)C]A‘

Adjoint fields:

1
diag®) ~ —— |mq,...,m,,0,...,0],

For r = N U(N) gauge group is Higgsed

For r < NN classically unbroken gauge group

UN —r) — U)nN-r o U(1)

adjoints (N —r — 1) monopoles



Quark VEV’s

(g

k= 1,...,7“, AZl,...,Nf,

where for r = N

while for r < N

«fp%2,ump, «fN:O, PZl,...,T.

Color-flavor locking
Both gauge U(N) and flavor SU(N) are broken, however diagonal

SU(N)cyr is unbroken if quark masses are equal

(q) = Ulq)U™"



3 Non-Abelian strings in r = N vacuum

Example in U(2) = U(1) x SU(2)

Abrikosov-Nielsen-Olesen string:

1 0

Q|7’—>oo ~ \/geia

T = 4n&

0 1

Non-Abelian string:

T = 2n&

Here r and « are polar coordinates in the plane orthogonal to the string

axis



String solution breaks SU(2)c.p — 2 orentational zero modes.

SUQ2)orr
Uy

We have two dimensional O(3) sigma model living on the string world
sheet.

——

S(1_|_1) = g /dt dz ((9k §)2, §2 =1
S
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For U(N) gauge group in the bulk we have 2D C'P(N — 1) model on the

string

CP(N — 1) == U(1) gauge theory in the strong coupling limit
S d*z 4| Va L Loworp
CP(N—1 ‘ n ‘ + 1oz aB ?| 0|

+ |o+mp|* [n* + %2 (\nP\Q — 26)2 },

P

where n* are complex fields P =1, ..., N,

Condition
n"|” =28,

imposed in the limit e? — oo



4 Confined monopoles

Higgs phase for quarks = confinement of monopoles

Elementary monopoles — junctions of two different strings

Example in U(2)
monopole

U(1)

_—

monopole flux = 47 x diag:{1, —1}



In 2D CP(N — 1) model on the string we have
N vacua = N Zy strings

and kinks interpolating between these vacua

Kinks = confined monopoles

monopoie

string 1 string 2

Y o

vacuum 1 vacuum 2
kink

Mkink _ Mmonopole



5 2D-4D correspondence in » = N vacuum

Exact superpotential in CP(/N — 1) model

1 N o+ mp
= — ]
Wer(0) A {Pz:l (0 +mp) In e\

Np
Y (otmg) L
K=N+1 e/

Vacuum equation (chiral ring equation)

N 3 Ny
[1(0+mp) =A™ ] (o+mx)
P=1 K=N-+1

N roots = N vacuaop, P=1,.... N



Kink masses

Mpp’ = 2Wep(op) = Wep(op)|, PP =1,...

Compare with monopole masses

Mmonopole L \/5 d)\
! — . SW
PP 2
7-‘-?/ BPP/
monopole kink
MPP’ _ PP’

. PP



6 Quantum deformation

Rewrite identically exact superpotential

1 — V29

W(o) = y {2 Tr [(0 —v/23%) In ’ e\//\_

Ny

O+ Mmgy
— 1
AZ::l(J—FmA) n— },
where for » = N vaquum
. e 1
<d1agq> 1> = _ﬁ [ml, ,mN] ,

Now we propose that quantum superpotential is

W(o) = % {2 <Tr [(a —V2a) 2 —GX?@DD

Ny

O+ Mgy
— 1
A=1 (U+mA) ’ €A } |

where quantum average is taken over the bulk theory.



Calculate quantum average over the bulk theory.

Gaiotto, Gukov, Seiberg 2013: method of resolvents

o) = <Tra—1ﬂ<1>>

Cachazo, Seiberg, Witten 2003: exact solution for chiral rings in

N =1QCD

N

-2

p_y O T mp

For » = N vacuum this gives classical expression



7 World sheet theory for non-Abeliabn

string in r = N — 1 vacuum

Use Cachazo-Seiberg-Witten solution for resolvent

(90W(0') 417T { Z_ In (U —I—AmA Z 1Il o+ mA)

t

+ (2N - Nf)an—ZIH +Zln }

where

and




Bulk instantons produce gaugino condensate

It penetrates into 2D theory on the string and opens a cut in o plane



8 2D-4D correspondence in r=N — 1

vacuuin

Kink mass
Mll_?]rgl%( = 2 ‘W(O’p/) — W(O’p)|

L fop 2N — N
o _/ P Io f o
T Jop 2 g2 — 45
14
_ > _ 45
EN 1 U\/mA u —I— Z U\/mA " }
2 05 \Jo? = 22 (0 +ma) N oyJo? = 2 (0 +ma)

Compare with monopole masses

V2

2T JBpp

1
Dpmonopole PP =1

) R

s |, N

1
MPpiPoe = Mgss, PP =1, ..



9 Example in U(2)

U(2) gauge theory with Ny = 2

Exact formula for the kink mass in r = 1 vacuum (m; = my = m)

1 m + vm? — 42
—<m In
2T m —vm? — 4A2

Mklnk _

+2v/m? — 4A2}

Compare with the kink mass in r = 2 vacuum given by CP(1) model

Am 4+ VAm?2 + 4A>2
Am — VAm? + 4A2

i {Am In

kink
MG =

I

— 2V Am?2 + 4A2}
2T

where Am = mqy — mo



10 Conclusions

e Bulk instantons penetrates into the theory on the non-Abelian string

e 2D-4D correspondence (coincidence of BPS spectra of 2D kinks and

4D monopoles) is still valid in r = N — 1 vacuum



11 Classical theory on the string in

r=N —1 vacuum

Shy = /d2 {‘V n \ +|Va nN( +(Vap( + | Vaz|? +LF25+— 10,0

2 2
+ o+ mpl [0 + o+ myl o] + o)’ [nN] + lof |2

2

€ 2
(In" 4 10V + |22 — [of? — 28) } |

P=1,..N—1.

The physical meaning of the n?¥ and z fields is related to “unwinding” of
the (N — 1)-th string into the N-th string which is, in fact, absent. The
coefficient b of this WCP model is equal to the sum of the charges of all
charged fields,

b=(N—-1)—-1+1+1=N,
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a. ochematic picture of the scalar potential in the theory. The complex
variable ¢ is schematically represented by the horizontal axis. Minima of

the potential correspond to elementary non-Abelian strings.
V(O’p) ITP, P = 1,...,N

b. The same potential in the limit =0

Vaet(0) = 4m |uo]|



r = N — 1 Vacuum

Vdef(O') = 47

M\/g2_§
14




~

r =N Vacuum, v = N

gp:—Qﬂ,uep, le,...,N,

where ep are the double roots of the Seiberg—Witten curve,

T :]ﬁl(ib—qbp>2 _4 <\//\§>NN ﬁ <x+m_\/§> _ ﬁ(x_ep>2

At small masses the double roots of the Seiberg—Witten curve are

271
\/561 = —M[+N, \/56,] = A=z exp (N ~ NJ>

for N < N — 1, where

~

I=1,..N and J=N+1,...N.

The N first roots are determined by the masses of the last N quarks — a
reflection of the fact that the non-Abelian sector of the dual theory is

not asymptotically free and is at weak coupling in the domain.



r < N Vacuum, V:Nf—rl
fp:—Q\fQ,u\/e%—e?v, P=1,..r

Seiberg-Witten curve

N-1

V= (@—ep)?(@—ef)(z—ey), e§+ey=0.
P=1

Cachazo, Seiberg, Witten, 2005

2 1
2 o

2 _
NT 3272

(Tr W, W*e) .

First v roots at small masses

\/iejz—mHT, I=1,..v. ey~ A=, J=v+1, ..r



