Non-Abelian strings and 2D-4D correspondence

Mikhail Shifman and Alexei Yung

1 Introduction

Non-Abelian strings were suggested in $\mathcal{N} = 2 \text{ U(N)} \text{ QCD}$

Hanany, Tong 2003

Auzzi, Bolognesi, Evslin, Konishi, Yung 2003

Shifman Yung 2004

Hanany Tong 2004

 Z_N Abelian string: Flux directed in the Cartan subalgebra, say for

$$SO(3) = SU(2)/Z_2$$

$$flux \sim \tau_3$$

Non-Abelian string:

Orientational zero modes

Rotation of color flux inside SU(N).

For U(N) gauge theory in the 4D bulk we have 2D $\mathbb{CP}(N-1)$ model on the string

2D-4D correspondence

Most striking example: $\mathcal{N} = 2$ QCD

Coincidence of BPS spectra

4D U(N)
$$\mathcal{N} = 2$$
 QCD \iff 2D CP(N-1) model in the particular

vacuum with maximum

number of condensed

quarks, r = N

Observed by *Dorey 1998*

Explained by Shifman Yung 2004 and Hanany Tong 2004 via non-Abelian strings

Can we generalize this 2D-4D correspondence to other r-vacua of $\mathcal{N}=2$ QCD?

$\mathbf{2}$ r-Vacua

 $\mathcal{N} = 2$ QCD with gauge group $U(N) = SU(N) \times U(1)$ and N_f flavors of fundamental matter – quarks

The field content:

U(1) gauge field A_{μ} SU(N) gauge field A_{μ}^{a} , $a=1,...,N^{2}-1$ complex scalar fields a, and a^{a} + fermions

Complex scalar fields q^{kA} and \tilde{q}_{Ak} (squarks) + fermions k = 1, ..., N is the color index, A is the flavor index, $A = 1, ..., N_f$

Mass term for the adjoint chiral field

$$\mathcal{W}_{\rm br} = \mu \operatorname{Tr} \Phi^2,$$

where

$$\Phi = \frac{1}{2} \mathcal{A} + T^a \mathcal{A}^a.$$

r Vacuum

First r (s)quarks condense,

F-terms in the potential

$$\left| \tilde{q}_A q^A + \sqrt{2} \frac{\partial \mathcal{W}_{\text{br}}}{\partial \Phi} \right|^2, \qquad \left| (\sqrt{2}\Phi + m_A) q^A \right|$$

Adjoint fields:

$$\langle \text{diag}\Phi \rangle \approx -\frac{1}{\sqrt{2}} [m_1, ..., m_r, 0, ..., 0],$$

For r = N U(N) gauge group is Higgsed

For r < N classically unbroken gauge group

$$U(N-r)$$
 \rightarrow $U(1)^{N-r}$ \rightarrow $U(1)$

adjoints
$$(N-r-1)$$
 monopoles

Quark VEV's

$$\langle q^{kA} \rangle = \langle \overline{\tilde{q}}^{kA} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{\xi_1} & \dots & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \sqrt{\xi_r} & 0 & \dots & 0 \end{pmatrix},$$

$$k = 1, ..., r, \qquad A = 1, ..., N_f,$$

where for r = N

$$\xi_P \approx 2 \ \mu m_P, \qquad P = 1, ..., N,$$

while for r < N

$$\xi_P \approx 2 \ \mu m_P, \qquad \xi_N = 0, \qquad P = 1, ..., r.$$

Color-flavor locking

Both gauge U(N) and flavor SU(N) are broken, however diagonal $SU(N)_{C+F}$ is unbroken if quark masses are equal

$$\langle q \rangle \to U \langle q \rangle U^{-1}$$

3 Non-Abelian strings in r = N vacuum

Example in $U(2) = U(1) \times SU(2)$

Abrikosov-Nielsen-Olesen string:

$$q|_{r o \infty} \sim \sqrt{\xi} \, e^{i\alpha} \left(egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}
ight)$$
 $T = 4\pi \xi$

Non-Abelian string:

$$q|_{r\to\infty} \sim \sqrt{\xi} \begin{pmatrix} e^{i\alpha} & 0 \\ 0 & 1 \end{pmatrix}$$
 $T = 2\pi\xi$

Here r and α are polar coordinates in the plane orthogonal to the string axis

String solution breaks $SU(2)_{C+F} \to 2$ orentational zero modes.

$$\frac{SU(2)_{C+F}}{U(1)} = CP(1) = O(3)$$

We have two dimensional O(3) sigma model living on the string world sheet.

$$S_{(1+1)} = \frac{\beta}{2} \int dt \, dz \, (\partial_k \, \vec{S})^2, \qquad \vec{S}^2 = 1$$

For U(N) gauge group in the bulk we have 2D CP(N-1) model on the string

CP(N-1) == U(1) gauge theory in the strong coupling limit

$$S_{\text{CP}(N-1)} = \int d^2x \left\{ \left| \nabla_{\alpha} n^P \right|^2 + \frac{1}{4e^2} F_{\alpha\beta}^2 + \frac{1}{e^2} |\partial_{\alpha} \sigma|^2 + |\sigma + m_P|^2 |n^P|^2 + \frac{e^2}{2} \left(|n^P|^2 - 2\beta \right)^2 \right\},$$

where n^P are complex fields P = 1, ..., N,

Condition

$$|n^P|^2 = 2\beta,$$

imposed in the limit $e^2 \to \infty$

4 Confined monopoles

Higgs phase for quarks \Longrightarrow confinement of monopoles

Elementary monopoles – junctions of two different strings

Example in U(2)

monopole flux = $4\pi \times \operatorname{diag} \frac{1}{2} \{1, -1\}$

In 2D CP(N-1) model on the string we have N vacua = N Z_N strings

and kinks interpolating between these vacua

Kinks = confined monopoles monopole

$$M^{kink} = M^{\text{monopole}}$$

5 2D-4D correspondence in r = N vacuum

Exact superpotential in CP(N-1) model

$$W_{\rm CP}(\sigma) = \frac{1}{4\pi} \left\{ \sum_{P=1}^{N} \left(\sigma + m_P \right) \ln \frac{\sigma + m_P}{e\Lambda} \right\}$$

$$-\sum_{K=N+1}^{N_F} (\sigma + m_K) \ln \frac{\sigma + m_K}{e\Lambda} \right\} ,$$

Vacuum equation (chiral ring equation)

$$\prod_{P=1}^{N} (\sigma + m_P) = \Lambda^{(N-\tilde{N})} \prod_{K=N+1}^{N_f} (\sigma + m_K)$$

 $N \text{ roots} \Longrightarrow N \text{ vacua } \sigma_P, P = 1, ..., N$

Kink masses

$$M_{PP'}^{\text{BPS}} = 2 \left| \mathcal{W}_{\text{CP}}(\sigma_{P'}) - \mathcal{W}_{\text{CP}}(\sigma_{P}) \right|, \qquad P, P' = 1, ..., N$$

Compare with monopole masses

$$M_{PP'}^{\text{monopole}} = \left| \frac{\sqrt{2}}{2\pi i} \oint_{\beta_{PP'}} d\lambda_{SW} \right|, \qquad P, P' = 1,N$$

$$M_{PP'}^{\text{monopole}} = M_{PP'}^{\text{kink}}, \qquad P, P' = 1, ..., N$$

6 Quantum deformation

Rewrite identically exact superpotential

$$\mathcal{W}^{\text{cl}}(\sigma) = \frac{1}{4\pi} \left\{ 2 \operatorname{Tr} \left[(\sigma - \sqrt{2} \Phi^{\text{cl}}) \ln \frac{\sigma - \sqrt{2} \Phi^{\text{cl}}}{e \Lambda} \right] - \sum_{A=1}^{N_f} (\sigma + m_A) \ln \frac{\sigma + m_A}{e \Lambda} \right\},$$

where for r = N vaquum

$$\left\langle \operatorname{diag}\Phi^{\operatorname{cl}}\right\rangle = -\frac{1}{\sqrt{2}}\left[m_1, ..., m_N\right],$$

Now we propose that quantum superpotential is

$$\mathcal{W}(\sigma) = \frac{1}{4\pi} \left\{ 2 \left\langle \operatorname{Tr} \left[(\sigma - \sqrt{2} \Phi) \ln \frac{\sigma - \sqrt{2} \Phi}{e \Lambda} \right] \right\rangle - \sum_{A=1}^{N_f} (\sigma + m_A) \ln \frac{\sigma + m_A}{e \Lambda} \right\},$$

where quantum average is taken over the bulk theory.

Calculate quantum average over the bulk theory.

Gaiotto, Gukov, Seiberg 2013: method of resolvents

$$T(\sigma) = \left\langle \operatorname{Tr} \frac{1}{\sigma - \sqrt{2} \, \Phi} \right\rangle$$

Cachazo, Seiberg, Witten 2003: exact solution for chiral rings in $\mathcal{N} = 1 \text{ QCD}$

$$T(\sigma)_{r=N} = \sum_{P=1}^{N} \frac{1}{\sigma + m_P}$$

For r = N vacuum this gives classical expression

7 World sheet theory for non-Abeliabn string in r = N - 1 vacuum

Use Cachazo-Seiberg-Witten solution for resolvent

$$\partial_{\sigma} \mathcal{W}(\sigma) = \frac{1}{4\pi} \left\{ \sum_{A=1}^{N-1} \ln \frac{(\sigma + m_A)}{\Lambda} - \sum_{A=N}^{N_f} \ln \frac{(\sigma + m_A)}{\Lambda} + (2N - N_f) \ln \frac{t}{\Lambda} - \sum_{A=1}^{N-1} \ln \frac{t_A}{\Lambda} + \sum_{A=N}^{N_f} \ln \frac{t_A}{\Lambda} \right\},$$

where

$$t = \frac{1}{2} \left(\sigma + \sqrt{\sigma^2 - \frac{4S}{\mu}} \right), \qquad S = \frac{1}{32\pi^2} \left\langle \operatorname{Tr} W_{\alpha} W^{\alpha} \right\rangle$$

and

$$t_A = \frac{1}{2} \left(\sqrt{\sigma^2 - \frac{4S}{\mu}} + \frac{\sigma + \frac{4S}{\mu m_A}}{\sqrt{1 - \frac{4S}{\mu m_A^2}}} \right)$$

Bulk instantons produce gaugino condensate It penetrates into 2D theory on the string and opens a cut in σ plane

8 2D-4D correspondence in r = N - 1 vacuum

Kink mass

$$M_{PP'}^{\text{kink}} = 2 \left| \mathcal{W}(\sigma_{P'}) - \mathcal{W}(\sigma_{P}) \right|$$

$$M_{PP'}^{\text{kink}} = \left| \frac{1}{\pi} \int_{\sigma_P}^{\sigma_{P'}} d\sigma \left\{ \frac{2N - N_f}{2} \frac{\sigma}{\sqrt{\sigma^2 - \frac{4S}{\mu}}} - \frac{1}{2} \sum_{A=1}^{N-1} \frac{\sigma \sqrt{m_A^2 - \frac{4S}{\mu}}}{\sqrt{\sigma^2 - \frac{4S}{\mu}} (\sigma + m_A)} + \frac{1}{2} \sum_{A=N}^{N_f} \frac{\sigma \sqrt{m_A^2 - \frac{4S}{\mu}}}{\sqrt{\sigma^2 - \frac{4S}{\mu}} (\sigma + m_A)} \right\} \right|$$

Compare with monopole masses

$$M_{PP'}^{\text{monopole}} = \left| \frac{\sqrt{2}}{2\pi i} \oint_{\beta_{PP'}} d\lambda_{SW} \right|, \qquad P, P' = 1,N$$

$$M_{PP'}^{\text{monopole}} = M_{PP'}^{\text{kink}}, \qquad P, P' = 1, ..., N$$

9 Example in U(2)

U(2) gauge theory with $N_f = 2$

Exact formula for the kink mass in r = 1 vacuum $(m_1 = m_2 = m)$

$$M^{\text{kink}} = \left| \frac{1}{2\pi} \left\{ m \ln \frac{m + \sqrt{m^2 - 4\Lambda^2}}{m - \sqrt{m^2 - 4\Lambda^2}} + 2\sqrt{m^2 - 4\Lambda^2} \right\} \right|$$

Compare with the kink mass in r = 2 vacuum given by CP(1) model

$$M_{r=N}^{\text{kink}} = \left| \frac{1}{2\pi} \left\{ \Delta m \ln \frac{\Delta m + \sqrt{\Delta m^2 + 4\Lambda^2}}{\Delta m - \sqrt{\Delta m^2 + 4\Lambda^2}} - 2\sqrt{\Delta m^2 + 4\Lambda^2} \right\} \right|,$$

where $\Delta m = m_1 - m_2$

10 Conclusions

- Bulk instantons penetrates into the theory on the non-Abelian string
- 2D-4D correspondence (coincidence of BPS spectra of 2D kinks and 4D monopoles) is still valid in r=N-1 vacuum

11 Classical theory on the string in

$$r = N - 1$$
 vacuum

$$S_{(2,2)}^{\text{cl}} = \int d^2x \left\{ \left| \nabla_{\alpha} n^P \right|^2 + \left| \nabla_{\alpha} n^N \right|^2 + \left| \tilde{\nabla}_{\alpha} \rho \right|^2 + \left| \nabla_{\alpha} z \right|^2 + \frac{1}{4e^2} F_{\alpha\beta}^2 + \frac{1}{e^2} \left| \partial_{\alpha} \sigma \right|^2 \right.$$

$$+ \left. \left| \sigma + m_P \right|^2 \left| n^P \right|^2 + \left| \sigma + m_N \right|^2 \left| \rho \right|^2 + \left| \sigma \right|^2 \left| n^N \right|^2 + \left| \sigma \right|^2 \left| z \right|^2$$

$$+ \left. \frac{e^2}{2} \left(\left| n^P \right|^2 + \left| n^N \right|^2 + \left| z \right|^2 - \left| \rho \right|^2 - 2\beta \right)^2 \right\},$$

$$P = 1, ..., N - 1.$$

The physical meaning of the n^N and z fields is related to "unwinding" of the (N-1)-th string into the N-th string which is, in fact, absent. The coefficient b of this WCP model is equal to the sum of the charges of all charged fields,

$$b = (N-1) - 1 + 1 + 1 = N,$$

a. Schematic picture of the scalar potential in the theory. The complex variable σ is schematically represented by the horizontal axis. Minima of the potential correspond to elementary non-Abelian strings.

$$V(\sigma_P) = T_P, \qquad P = 1, ..., N$$

b. The same potential in the limit $\mu = 0$

$$V_{\rm def}(\sigma) = 4\pi \left| \mu \sigma \right|$$

r = N - 1 Vacuum

b

a

$$V_{\text{def}}(\sigma) = 4\pi \left| \mu \sqrt{\sigma^2 - \frac{4S}{\mu}} \right|$$

$$r = N$$
 Vacuum, $\nu = \tilde{N}$

$$\xi_P = -2\sqrt{2}\,\mu\,e_P, \qquad P = 1, ..., N,$$

where e_P are the double roots of the Seiberg-Witten curve,

$$y^{2} = \prod_{P=1}^{N} (x - \phi_{P})^{2} - 4\left(\frac{\Lambda}{\sqrt{2}}\right)^{N-N} \prod_{A=1}^{N_{f}} \left(x + \frac{m_{A}}{\sqrt{2}}\right) = \prod_{P=1}^{N} (x - e_{P})^{2}$$

At small masses the double roots of the Seiberg-Witten curve are

$$\sqrt{2}e_I = -m_{I+N}, \qquad \sqrt{2}e_J = \Lambda_{\mathcal{N}=2} \exp\left(\frac{2\pi i}{N - \tilde{N}}J\right)$$

for $\tilde{N} < N - 1$, where

$$I = 1, ..., \tilde{N}$$
 and $J = \tilde{N} + 1, ..., N$.

The N first roots are determined by the masses of the last N quarks — a reflection of the fact that the non-Abelian sector of the dual theory is not asymptotically free and is at weak coupling in the domain.

$$r < N \text{ Vacuum}, \ \nu = N_f - r$$

$$\xi_P = -2\sqrt{2}\mu\sqrt{e_P^2 - e_N^2}, \qquad P = 1, ..., r$$

Seiberg-Witten curve

$$y^{2} = \prod_{P=1}^{N-1} (x - e_{P})^{2} (x - e_{N}^{+})(x - e_{N}^{-}), \qquad e_{N}^{+} + e_{N}^{-} = 0.$$

Cachazo, Seiberg, Witten, 2003:

$$e_N^2 = \frac{2S}{\mu}, \qquad S = \frac{1}{32\pi^2} \langle \text{Tr} W_\alpha W^\alpha \rangle.$$

First ν roots at small masses

$$\sqrt{2}e_I = -m_{I+r}, \qquad I = 1, ..., \nu. \qquad e_J \sim \Lambda_{\mathcal{N}=2}, \qquad J = \nu + 1, ..., r$$