Precision tests of QED

Alexander Penin

University of Alberta & TTP Karlsruhe

QUARKS 2014

Suzdal, Russia, June 02-08, 2014

Precision tests of QED

with positronium bound state

Alexander Penin

University of Alberta & TTP Karlsruhe

QUARKS 2014

Suzdal, Russia, June 02-08, 2014

Topics discussed

High precision tests of QED

main ideas and results

Topics discussed

High precision tests of QED

main ideas and results

Positronium:

- theory
- experiment
- *"puzzles"*

Topics discussed

High precision tests of QED

main ideas and results

Positronium:

- theory
- experiment
- *"puzzles"*

• Hyperfine splitting to $\mathcal{O}(\alpha^7 m_e)$:

one-photon annihilation contribution

Based on

M. Baker, P. Marquard, A. Penin, J. Piclum and M. Steinhauser,

Phys. Rev. Lett. **112**, 120407 (2014)

High precision tests of QED

Main idea

spectroscopy of a bound electron

High precision tests of QED

Main idea

spectroscopy of a bound electron

Practical realization

- hydrogen
- *geonium*
- positronium

High precision tests of QED

Main idea

spectroscopy of a bound electron

Practical realization

- hydrogen
- geonium
- positronium

QED in a nutshell

$$\overline{\Psi}\left(i\gamma^{\mu}D_{\mu}-m_{e}\right)\Psi-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}$$

Fine structure constant ①

- Rydberg constant from hydrogen/deuterium spectrum $R_{\infty} = \frac{\alpha^2 m_e c}{4\pi\hbar}$
- *electron/rubidium mass ratio from cyclotron frequency*
 - $\frac{m_e}{m_{Rb}} = \frac{\omega_{Rb}}{\omega_e}$
- *•* rubidium mass/Planck constant ratio from recoil

$$v_{rec} = \frac{\hbar k}{m_{Rb}}$$

Fine structure constant ①

- Rydberg constant from hydrogen/deuterium spectrum $R_{\infty} = \frac{\alpha^2 m_e c}{4\pi\hbar}$
- electron/rubidium mass ratio from cyclotron frequency
 - $\frac{m_e}{m_{Rb}} = \frac{\omega_{Rb}}{\omega_e}$
- rubidium mass/Planck constant ratio from recoil

 $v_{rec} = \frac{\hbar k}{m_{Rb}}$

Fine structure constant

• electron anomalous magnetic moment ($\bar{\mu} = \frac{ge}{2m_e c}\bar{s}$)

$$\frac{g}{2} = 1 + \frac{\alpha}{2\pi} + \dots$$

geonium spectrum

$$\frac{g}{2} = \frac{\omega_s}{\omega_c}$$

Most precise prediction/measurement

• Fine structure constant (hydrogen spectrum, Rb recoil) $\alpha^{-1} = 137.03599905(9)$

R. Bouchendira, P Clade, S. Guellati-Khelifa, F. Nez, and F. Biraben (2011)

• Fine structure constant (Electron g - 2, geonium spectrum) $\alpha^{-1} = 137.03599917(4)$

T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio (2012)

Most precise prediction/measurement

• Fine structure constant (hydrogen spectrum, Rb recoil) $\alpha^{-1} = 137.03599905(9)$

R. Bouchendira, P Clade, S. Guellati-Khelifa, F. Nez, and F. Biraben (2011)

• Fine structure constant (Electron g - 2, geonium spectrum) $\alpha^{-1} = 137.03599917(4)$

T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio (2012)

Biggest problem so far

• $\sim 7\sigma$ mismatch of proton charge radius (hydrogen vs muon hydrogen Lamb shift)

Positronium bound state

Basic facts

- pure QED system
- *ortho* and *"para"* spin states
- best observables: width Γ_o , hyperfine splitting $\Delta
 u = E_o E_p$
- QED prediction: $\mathcal{O}(\alpha^3 \ln(\alpha))$

Positronium bound state

Basic facts

- pure QED system
- "ortho" and "para" spin states
- ${\scriptstyle \bullet \ } {\it oecays: p-Ps \rightarrow n\gamma, o-Ps \rightarrow (2n+1)\gamma}$
- best observables: width Γ_o , hyperfine splitting $\Delta
 u = E_o E_p$
- **QED** prediction: $\mathcal{O}(\alpha^3 \ln(\alpha))$
- Why interesting?
 - o-Ps mixes with an off-shell photon at Born level
 - ► sensitive to exotic new physics

New physics signals?

Large extra dimensions

S.Gninenko, N.Krasnikov, A. Rubbia (2003)

S. Dubovsky, V. Rubakov, , P. Tinyakov (2000)

modified gravitational potential

$$V(r) = -G \frac{m_1 m_2}{r} \left(1 + \frac{1}{k^2 r^2}\right)$$

• effect on decay width $\delta \Gamma_o \sim \frac{1}{\alpha^2} \frac{m_e}{k} \Gamma_o$

New physics signals?

Large extra dimensions

S.Gninenko, N.Krasnikov, A. Rubbia (2003)

S. Dubovsky, V. Rubakov, , P. Tinyakov (2000)

• modified gravitational potential V(r) =

$$V(r) = -G\frac{m_1m_2}{r} \left(1 + \frac{1}{k^2r^2}\right)$$

• effect on decay width $\delta \Gamma_o \sim \frac{1}{\alpha^2} \frac{m_e}{k} \Gamma_o$

Mixing of "normal" photon with "dark" or "mirror" photon Glashow (1986)

• kinetic mixing $\epsilon F^{\mu\nu}F_{\mu\nu}$

• effect on HFS $\delta\Delta\nu\sim\epsilon\Delta\nu$

Positronium bound state

• ~ 5σ mismatch of QED and experiment on Γ_o

• ~ 2.5σ mismatch of QED and experiment on $\Delta\nu$

Orthopositronium life time measurements

FIG. 1. Time-tagged and gated slow positron beam used to measure the orthopositronium decay rate.

Ann Arbor experiment 1990

Ann Arbor experiment 2003

Positronium bound state

• ~ 5σ mismately of SED and experiment on Γ_o

• ~ 2.5σ mismatch of QED and experiment on $\Delta\nu$

Positronium HFS

Experiment

 $\Delta \nu^{exp} = 203.3875(16) \text{ GHz}$ A. P. Mills, Jr., *et al.* Phys. Rev. Lett. **34**, 246 (1975) $\Delta \nu^{exp} = 203.38910(74) \text{ GHz}$ M. W. Ritter, *et al.* Phys. Rev. A **30**, 1331 (1984).

$$\Delta \nu^{\rm exp} = 203.394\,2(16)_{\rm stat.}(13)_{\rm syst.}\,{\rm GHz}$$

A. Ishida, *et al.* arXiv:1310.6923 [hep-ex].

Theory

 $\Delta \nu^{\text{th}} = 203.391\,69(41)\,\text{GHz}$ B. A. Kniehl and A. A. Penin, Phys. Rev. Lett. **85**, 5094 (2000).

Basic theory

Born/Breit spin-dependent interaction

$$\delta_{hfs} \mathcal{H} = \left(\left[\frac{4}{3} \right]_{sct} + [1]_{ann} \right) \frac{\pi \alpha}{m_e^2} \delta(\boldsymbol{r}) \boldsymbol{S}^2 \,,$$

Leading order HFS

$$\Delta \nu^{LO} = \left(\left[\frac{1}{3} \right]_{sct} + \left[\frac{1}{4} \right]_{ann} \right) \alpha^4 m_e$$

QED corrections

- J. Pirenne, Arch. Sci. Phys. Nat. 29, 265 (1947).
- V. B. Berestetski and L. D. Landau, Zh. Eksp. Teor. Fiz. (USSR) 19, 673 (1949).
- R. A. Ferrell, Phys. Rev. 84, 858 (1951).
- R. Karplus and A. Klein, Phys. Rev. 87, 848 (1952).
- S. J. Brodsky and G. W. Erickson, Phys. Rev. 148, 26 (1966).
- R. Barbieri, J. A. Mignaco and E. Remiddi, Nuovo Cim. A 11, 824 (1972).
- W. E. Caswell and G. P. Lepage, Phys. Rev. A 20, 36 (1979).
- J. R. Sapirstein, E. A. Terray and D. R. Yennie, Phys. Rev. D 29, 2290 (1984).
- G. S. Adkins, M. H. T. Bui and D. Zhu, Phys. Rev. A 37, 4071 (1988).
- G. S. Adkins, Y. M. Aksu and M. H. T. Bui, Phys. Rev. A 47, 2640 (1993).
- A. H. Hoang, P. Labelle and S. M. Zebarjad, Phys. Rev. Lett. 79, 3387 (1997)
- K. Pachucki, Phys. Rev. Lett. 79, 4120 (1997)
- K. Pachucki and S. G. Karshenboim, Phys. Rev. Lett. 80, 2101 (1998).
- A. Czarnecki, K. Melnikov and A. Yelkhovsky, Phys. Rev. Lett. 82, 311 (1999)
- G. S. Adkins and J. Sapirstein, Phys. Rev. A 58, 3552 (1998)
- S. G. Karshenboim, Zh. Eksp. Teor. Fiz. 103, 1105 (1993)
- R. J. Hill, Phys. Rev. Lett. 86, 3280 (2001).
- K. Melnikov and A. Yelkhovsky, Phys. Rev. Lett. 86, 1498 (2001).
- B. A. Kniehl and A. A. Penin, Phys. Rev. Lett. 85, 5094 (2000).

QED corrections

$$\begin{split} \Delta \nu^{\text{th}} &= \Delta \nu^{LO} \left\{ 1 - \frac{\alpha}{\pi} \left(\frac{32}{21} + \frac{6}{7} \ln 2 \right) - \right. \\ &+ \left. \left(\frac{\alpha}{\pi} \right)^2 \left[-\frac{5}{14} \pi^2 \ln \alpha + \frac{1367}{378} - \frac{5197}{2016} \pi^2 + \left(\frac{6}{7} + \frac{221}{84} \pi^2 \right) \ln 2 - \frac{159}{56} \zeta(3) \right] \\ &+ \left. \left(\frac{\alpha}{\pi} \right)^3 \left[-\frac{3}{2} \pi^2 \ln^2 \alpha + \left(-\frac{62}{15} + \frac{68}{7} \ln 2 \right) \pi^2 \ln \alpha + D \right] \right\}, \end{split}$$

- **•** Anatomy of $\mathcal{O}(\alpha^2)$ nonlogarithmic term
 - 47% scattering contribution
 - 32% one-photon annihilation contribution

This work

 \bullet one-photon annihilation contribution to D

Formula of success

pNRQED + Dim.Reg. = $O(\alpha^7 m_e)$

Nonrelativistic effective theory

- Multiscale problem:
 - hard m_e soft vm_e ultrasoft v^2m_e
- Coulombic bound state
 Schrödinger equation
- How to derive Schrödinger equation from QED?

 PNRQED

$\label{eq:QED} QED \rightarrow NQED \rightarrow pNRQED \ (\text{Caswell, Lepage; Pineda, Soto})$

$\textbf{QED} \rightarrow \textbf{NQED} \rightarrow \textbf{pNRQED} \text{ (Caswell, Lepage; Pineda, Soto)}$

 $\overline{\Psi}\left(i\gamma^{\mu}D_{\mu}-m_{e}\right)\Psi$

$\label{eq:QED} QED \rightarrow NQED \rightarrow pNRQED \ (\text{Caswell, Lepage; Pineda, Soto})$

$$\overline{\Psi} \left(i\gamma^{\mu} D_{\mu} - m_{e} \right) \Psi$$
hard modes
integrated out
$$\psi^{\dagger} \left(iD_{0} + \frac{\boldsymbol{D}^{2}}{2m_{e}} \right) \psi + \frac{1}{8m_{e}^{3}} \psi^{\dagger} \boldsymbol{D}^{4} \psi - \frac{c_{F} e}{2m_{e}} \psi^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{B} \psi + \dots$$

$\label{eq:QED} QED \rightarrow NQED \rightarrow pNRQED \ (\text{Caswell, Lepage; Pineda, Soto})$

Loops in the Effective Theory

How to separate the regions of virtual momenta?

Loops in the Effective Theory

How to separate the regions of virtual momenta?

Regions are separated in dimensional regularization!

Effective theory in dimensional regularization

(Pineda, Soto; Czarnecki, Melnikov, Yelkhovsky; Beneke, Signer, Smirnov; Kniehl, Penin, Smirnov, Steinhauser)

- no new scales
- *gauge, lorenz invariance*
- "build-in" matching

Structure of the corrections to HFS

irreducible

reducible

Master formula

$$\Delta_{ann}^{1-\gamma}\nu = \frac{\alpha^4 m_e}{4} \frac{R_o}{1+P_o}.$$

Irreducible contribution

Vacuum polarization at the bound state pole

$$\lim_{E \to E_o} \Pi(q^2) = \frac{\alpha}{4\pi} \frac{R_o}{E/E_o - 1 - i\varepsilon},$$

Effective theory decomposition

$$R_o = \left(c_v - \frac{E_o}{m_e}\frac{d_v}{6} + \ldots\right)^2 \left(1 + \frac{E_o}{2m_e}\right)^{-2} \frac{|\psi_o(0)|^2}{|\psi^C(0)|^2}$$

Positronium wave function

$$\left(-\frac{\partial^2}{m_e} - \frac{\alpha}{|\boldsymbol{r}|} + \delta \mathcal{H} - E\right)\psi_o(\boldsymbol{r}) = 0$$

Irreducible contribution

• Similar to $\mathcal{O}(\alpha_s^3)$ corrections to $\Gamma(\Upsilon(1S) \to e^+e^-)$

M. Beneke, Y. Kiyo, P. Marquard, A. Penin, J. Piclum, D. Seidel and M. Steinhauser, Phys. Rev. Lett. **112**, 151801 (2014)

Irreducible contribution

Bottlenecks:

three-loop hard vertex correction

P. Marquard, J. Piclum, D. Seidel and M. Steinhauser, Phys. Rev. D 89, 034027 (2014)

ultrasoft corrections

M. Beneke, Y. Kiyo and A. A. Penin, Phys. Lett. B 653, 53 (2007)

Reducible corrections

Regular part of vacuum polarization

$$P_o = \lim_{E \to E_o} \left(e^2 \Pi(q^2) - \frac{\alpha^2 R_o}{E/E_o - 1 - i\varepsilon} \right).$$

Bottlenecks

Three-loop hard vacuum polarization

Results

• Irreducible contribution $R_o = 1 + \sum_{n=1} \left(\frac{\alpha}{\pi}\right)^n r^{(n)}$

$$r^{(3)} = -\frac{383}{18} + \left[-\frac{3}{2}\ln^2\alpha + \left(-\frac{7}{90} + 8\ln2\right)\ln\alpha - \frac{1019}{180} - 4\ln2 + \delta_o^{us}\right]\pi^2 + 2\zeta(3) - \frac{109}{864}\pi^4 + 2c_{v\,0}^{(3)}.$$

• Reducible contribution $P_o = \sum_{n=1} \left(\frac{\alpha}{\pi}\right)^n p^{(n)}$

$$p^{(3)} = (2\ln\alpha - 3) \pi^2 + p_{h\,0}^{(3)},$$

• Cross-check of $\mathcal{O}(m_e \alpha^6)$ one-photon annihilation

A. H. Hoang, P. Labelle and S. M. Zebarjad, Phys. Rev. Lett. 79, 3387 (1997)

Final result

$$D_{ann}^{1-\gamma} = \frac{3}{7} \left[-\frac{49309}{1458} + \left(\frac{16573}{3240} - \frac{65}{9} \ln 2 + \delta_o^{us} \right) \pi^2 - \frac{221}{18} \zeta(3) - \frac{109}{864} \pi^4 + 2c_{v\,0}^{(3)} - p_{h\,0}^{(3)} \right] = 84.8 \pm 0.5$$

• Structure of the corrections $\mathcal{O}(m_e \alpha^7)$

- Bethe logarithm δ_o^{us} gives $D_{ann}^{1-\gamma} \approx 80$
- scattering contribution estimate $D_{sct} \approx \frac{4\pi^2}{7} \delta_o^{us} \approx 106$
- relativistic contributions (electron g-2, electron loops): $D \sim 1$

G. Adkins, R. Fell; M. Eides, V. Shelyuto

Final result

Summary

• Hyperfine splitting in positronium to $\mathcal{O}(m_e \alpha^7)$

- first result of "full complexity" is now available
- favors one the conflicting experiments

Summary

• Hyperfine splitting in positronium to $\mathcal{O}(m_e \alpha^7)$

- first result of "full complexity" is now available
- favors one the conflicting experiments
- QED is doing rather well so far
- Full $\mathcal{O}(m_e \alpha^7)$ result and more accurate measurements are crucial to give QED a hard time

Summary

• Hyperfine splitting in positronium to $\mathcal{O}(m_e \alpha^7)$

- first result of "full complexity" is now available
- favors one the conflicting experiments
- QED is doing rather well so far
- Full $\mathcal{O}(m_e \alpha^7)$ result and more accurate measurements are crucial to give QED a hard time
- Positronium could be an alternative gate to a BSM physics in the era of the total SM success at the LHC