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In spatially three-dimensional space some physical system is
constraint by a two-dimensional plane which is perpendicular
to the Z coordinate axis.

There is an external homogeneous and time independent
magnetic field B tilted with respect to this plane.

The corresponding (341)-dimensional vector potential A, is
given by A071 = 0, A2 = BLX, A3 == B”y, i.e. BX = BH’
B,=0,B,=8B,.

The Zeeman interaction of electron magnetic moment with B
is taken into account

Their low-energy dynamics is described by the
(2+1)-dimensional Gross-Neveu type Lagrangian.



Lagrangian

9 2

L= Pka [0 + 71191 + 7202 = (1) | + (Z awa) :
k=1

where V1o = 015 + ieA1 2, index a =1, ..., N of the internal O(N)
group.
Yka(x) - the massless Dirac fermion field, transforming over a
reducible 4-component spinor representation of the
(2+1)-dimensional Lorentz group.
k = 1,2 : spinor fields 112(x) and 12.(x) (a =1, ..., N) correspond
to electrons with spin projections 1/2 and -1/2 on the direction of
external magnetic field.

v = giug|B|/2, where |B| = | /B‘T + B2, g is the spectroscopic

Lande factor and pp is the Bohr magneton.
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Chiral symmetry

The model is invariant under the discrete chiral transformation,

Q;[)ka — 75¢ka



Auxiliary Lagrangian

Auxiliary Lagrangian

No? 2 . . .
L=—7c+ kz_;¢ka (70161: + 41V +Y2iVa + ey - U)Wa,

where 1 = v, pp = —v and from now on v = ug|B|



Auxiliary Lagrangian

Auxiliary Lagrangian

No? - . . .
L=—7c+ ;Wa (70181: +A VL2V + ey - U)Wa,
where 11 = v, up = —v and from now on v = ,uB]§|

Equation of motion for field o(x)

2
- WG Z awka-
k=1



In the leading order of the large-N approximation, the effective
action Seg(0)

exp(iSett(0)) :/ﬁ ﬁ[d&ka][dwka] exp(i/£d3x>,

k=1la=1

where

N ~
Set(0) = — / d3XE02(X) + Ser-

The fermion contribution to the effective action, i.e. the term Seg,
is given by

2 N 2
exp(iSur) = / [T TT1d7licvin] expi / S s (0100
=1 a=1 k=1

V1 + 20V + ur® = 0 ) ad®x }



Effective potential

The ground state expectation value (o(x)) is determined by the
equation,

OSesr

Solx) O




Effective potential

The ground state expectation value (o(x)) is determined by the
equation,

5Seff
do(x)
For simplicity we suppose that the ground state expectation value

does not depend on space-time coordinates, i.e.

(o(x)) =M,

=0.

where M is a constant quantity.



Effective potential

The ground state expectation value (o(x)) is determined by the
equation,

0Sef

do(x)
For simplicity we suppose that the ground state expectation value
does not depend on space-time coordinates, i.e.

(o(x)) =M,

=0.

where M is a constant quantity.

In fact, it is a coordinate of the global minimum point of the
thermodynamic potential (TDP) Q(M; v, B ). In the leading order
of the large-N expansion the TDP is defined by the following
expression:

1

/d3XQ(I\/I; v,B) = ——S8a(c(x))

N O'(X):M’



/d3XQ(M; v,B)) =

/d3 E+Nln </H H[d¢lb][d¢lb] eXP( /i@zkaDkwkad3X)> :
i

/=1 b=1

where D =00y +41iV1 +~72iVo + y® — M.



B [ee]
Q" (M; v, B1) = Q(M: BL) — 25 ST 6,0(v — 2n)(v — £0),
T

n=0



B [ee]
Q" (M; v, B1) = Q(M: BL) — 25 ST 6,0(v — 2n)(v — £0),
T

n=0

M?  MeB, (2eB,)%? 1 M2
Qren M B — _ - I
( ' L) + 27 2€BJ_ 5

g us us



B [ee]
Q" (M; v, B1) = Q(M: BL) — 25 ST 6,0(v — 2n)(v — £0),
T

n=0

M?2 MeB 3/2 2
Qren(M; BL) = 4 eb| o (2eBJ_) _1’ L ’
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2 2
QU (M: ) = TG 2/(;) (2E)—2 (Z’)’ (|E+u|+|E V|- 2E)



2 2
QU (M: ) = TG 2/(;) (2E)—2 (Z’)’ (|E+u|+|E V|- 2E)

+4/\3(\f+|n(1+\f))}

G=G(A) 372

Q"(M;v) = AIi_)moo {Qreg(l\/l; V)‘



QU (M: ) = M 2/(d2 (2E)—2 @*p (|E+u|+|E V|- 25).

4G 27)?

(2m)?
ANV 4 In(L+ V2)) } |

ren . T reg .
2 (M’V)_AILmOO{Q (M; V)‘G:G(A) 372
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VIM) = Q5 (Miv)| =T+ 3




Qo (M) = M 2/(d2 (26)-2 [ &P (|E+u|+|E V|- 2E).

4G 21)?2 )
3 n
=g faon_, - SIS0
_M

V(M) =Q™"(M,;v)

v=0 E 37
1 1 4/\|n(1+f)+ 11
4G 4G(/\) 72 g 4GC T

where g is a finite and A-independent model parameter with
. . . . 2
dimensionality of inverse mass and G, =

™

16A In(1+v/2) "



The case g > 0, B|
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Puc.: The mass gap My(BL,v) vs By in the particular case B = 0 and

g = 5g. = 10ug/e.
The gap is an increasing function vs B up to a critical value B, ., where
it vanishes sharply, i.e. the first order phase transition occurs.



The case g > 0, The case B, # |B|.
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Puc.: The (|.§|, B, )-phase portrait of the model at g = 5g. = 10ug/e.
The numbers 1 and 2 denote the chirally symmetric and chirally broken
phases, respectively. In the unphysical region B, > \l§| The boundary

between 1 and 2 phases is the curve of the first order phase transitions.



Magnetization

dQren(M; v, B, )
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Magnetization

dQren(M; v, B, )
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Magnetization

dQren(M; v, B, )
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Oscillations of the magnetization The case g > 0.
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Puc.: Magnetization m(|B|, B.) Puc.: Magnetization m(|B|, B.)
vs B, at fixed eg?|B| =1 and vs B, at fixed eg?|B| =1 and
g =5g8.=10ug/e. g =0.5g. = ug/e.

Magnetic oscillations usually occur in the presence of chemical
potential 1. Magnetic oscillations can be induced even at = 0 by
tilting the external magnetic field with respect to a_system plane.



The case g <0, B| =0, |g]| = ug/e.
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Puc.: Mass gap Mo(B_ ,v) and magnetization m(|B|, B, ) vs By in the
particular case B = 0 and |g| = uug/e. Curves 1 and 2 are the plots of
the dimensionless quantities gMo(B_,v) and mgm(|B|, B.)/e,
correspondingly. Here eg?B | ., ~ 0.81 and eg?B, ¢, ~ 0.94.



The case g <0, B| #0, |g| = ug/e.
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Puc.: The (|B|, BL)-phase portrait of the model at |g| = yp/e. The
numbers 1 denote the chirally symmetric phase, whereas the numbers 2
and 3 denote two different chirally broken phases (on the boundary
between 2 and 3 the mass gap changes by a jump). The line BC is a
curve of second order phase transitions; on the other lines the first order
phase transitions take place. The unphysical region: B, -> |§|



The case g < 0,|g| # ug/e.
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Puc.: The (x, y)-phase diagram of the model, where x = 15|B||g| and

y = eg?B, , typical for values of ¢ = e|g|/ug < c* ~ 28. Physical region
of the diagram corresponding to B, < |B] relation lies just below the line
L={(x,y) : y = cx}. (1-the chirally symmetric phase, 2,3 -two different
chirally broken phases. First order phase transitions occur on the solid
curves. On the line a8 second order phase transitions take place.



case g < 0,|g| # ug/e.
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Puc.: The (x, y)-phase diagram of the model, where x = u|B||g| and
y = eg?B, , typical for values of ¢ = e|g|/ug > c* ~ 28. Physical region
of the diagram, corresponding to B, < |B| relation, lies just below
and/or to the right of the line L={(x,y) : y = cx}. Other notations are
the same as in the previous figure.



Numerical estimates in the context of condensed matter

physics

In our numerical estimates we use the following relations :
ug = e/(2me), where m, is the electron rest mass, m. ~ 0.5 MeV;
1 Tesla =~ 700 eV2; e ~ 1/4/137, as in graphene.

mg <0 Myr=—ve/g xrp =x/vr = pug|B||g|/vE,
In case XF = 1 ‘B_Q’ = VF/(‘g‘,U'B) = MOF/,UB-
MOF =1meV : |Bo| ~ 14T.
Mor = 10meV : |By| ~ 140T.
The magnitudes of | B, at which one can observe phase
transitions, are even less and might be as small as 0.7|By|.

m If v/ =1/300 and gs = 2, as in graphene, then the slope
factor cg of the line L is approximately equal to 103 at
Mor = 10 meV, whereas it is of order of 10% at Mgr = 1 meV,
i.e. cp > c* = 28.
Hence, graphene-like planar systems corresponds to the case
c=el|g|/pp > c* =~ 28.



Numerical estimates in the context of condensed matter

physics

m Chiral symmetry cannot be restored by an arbitrary strong
external perpendicular magnetic field, and the enhancement
effect is realized at B} |§] However, tilting the magnetic
field away from a normal of the plane, it is possible to restore
the symmetry, if |B| > 0.7|Bo|. The angle ¢q between B and
the plane of the system, at which the restoration of the
symmetry occurs.

At |B| = 1.5|By|, Mor = 10 meV sin g ~ 0.02, sin g ~ 0.2
At |B| = 1.5|By|, Mor = 1 meV sin g ~ 0.002

l.e. the restoration of the chiral symmetry occurs at very weak
B, -components of the magnetic field.



Numerical estimates in the context of condensed matter

physics

m gs = 200 and vg :_}/300
At Mor = 1 meV, ‘Bo| =014T
At Mop =10 meV, |By| =14T

We see that the effects which are due to the Zeeman interaction
can be observed in real condensed matter systems at reasonable
laboratory magnitudes of external magnetic fields.



Conclusions

m At ug #0and g > 0, gc = 2ug/e,
At g > gc an arbitrary rather weak external magnetic field B
induces spontaneous chiral symmetry breaking provided that
there is not too great a deviation of B from a vertical as well
as that |B| < B(g), where 0 < B.(g) < co.
At 0 < g < g¢ chiral symmetry cannot be broken by an
external magnetic field. (In contrast, at ug = 0 and any values
of g > 0 the chiral symmetry breaking is induced by arbitrary
external magnetic field B such that B, # 0.)

m Suppose that ug # 0, g > g- > 0 and chiral symmetry is
broken, i.e. B has a rather large B, component. Then chiral
symmetry can be restored simply by tilting magnetic field to a
system plane, i.e. without any increase of its modulus |B|.



Conclusions

m We have shown that at ug # 0, g > 0 and arbitrary fixed
|B| # 0 one can observe oscillations of the magnetization in
the region of small values of B .

m At ug # 0 and g < 0, at non-vanishing Zeeman interaction
the phase portrait of the model contains at least two chirally
nonsymmetric phases. In the phase 2, which is a diamagnetic
one, the enhancement of the chiral symmetry is occurred,
whereas in the paramagnetic phase 3 it is absent.

m At g <0 and c = e|lg|/us < c* = 28, sufficiently high values
of |B| (even at a perpendicular magnetic field) restores the
chiral symmetry.

At g <0 and ¢ = e|g|/pg > c* the line L does not cross any
of the critical curves of the figure. So, in this case at an
arbitrary perpendicular magnetic field chiral symmetry cannot
be restored. Tilting the magnetic field restores the symmetry.
This situation is typical for graphene-like planar systems.
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