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Model

In spatially three-dimensional space some physical system is
constraint by a two-dimensional plane which is perpendicular
to the ẑ coordinate axis.

There is an external homogeneous and time independent
magnetic �eld ~B tilted with respect to this plane.
The corresponding (3+1)-dimensional vector potential Aµ is
given by A0,1 = 0, A2 = B⊥x , A3 = B‖y , i.e. Bx = B‖,
By = 0, Bz = B⊥.

The Zeeman interaction of electron magnetic moment with ~B
is taken into account

Their low-energy dynamics is described by the
(2+1)-dimensional Gross-Neveu type Lagrangian.



Lagrangian

L = ψ̄ka

[
γ0i∂t + γ1i∇1 + γ2i∇2 − ν(−1)kγ0

]
ψka +

G

N

(
2∑

k=1

ψ̄kaψka

)2

, (1)

where ∇1,2 = ∂1,2 + ieA1,2, index a = 1, ...,N of the internal O(N)
group.
ψka(x) - the massless Dirac fermion �eld, transforming over a
reducible 4-component spinor representation of the
(2+1)-dimensional Lorentz group.
k = 1, 2 : spinor �elds ψ1a(x) and ψ2a(x) (a = 1, ...,N) correspond
to electrons with spin projections 1/2 and -1/2 on the direction of
external magnetic �eld.

ν = gLµB |~B|/2, where |~B| =
√

B2
‖ + B2

⊥, gL is the spectroscopic

Lande factor and µB is the Bohr magneton.



γ-matrices

γ̃0 = σ3 =

(
1 0
0 −1

)
, γ̃1 = iσ1 =

(
0 i
i 0

)
, γ̃2 = iσ2 =

(
0 1
−1 0

)
, (2)

γµ =

(
γ̃µ 0
0 −γ̃µ

)
.



Chiral symmetry

The model is invariant under the discrete chiral transformation,

ψka → γ5ψka



Auxiliary Lagrangian

Auxiliary Lagrangian

L = −Nσ2

4G
+

2∑
k=1

ψ̄ka

(
γ0i∂t + γ1i∇1 + γ2i∇2 + µkγ

0 − σ
)
ψka,

where µ1 = ν, µ2 = −ν and from now on ν = µB |~B|

Equation of motion for �eld σ(x)

σ(x) = −2G

N

2∑
k=1

ψ̄kaψka.
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In the leading order of the large-N approximation, the e�ective
action Seff(σ)

exp(iSeff(σ)) =

∫ 2∏
k=1

N∏
a=1

[dψ̄ka][dψka] exp
(
i

∫
L d3x

)
,

where

Seff(σ) = −
∫

d3x
N

4G
σ2(x) + S̃eff .

The fermion contribution to the e�ective action, i.e. the term S̃eff ,
is given by

exp(i S̃eff) =

∫ 2∏
l=1

N∏
a=1

[dψ̄la][dψla] exp
{
i

∫ 2∑
k=1

ψ̄ka

(
γ0i∂t+

+γ1i∇1 + γ2i∇2 + µkγ
0 − σ

)
ψkad

3x
}
.



E�ective potential

The ground state expectation value 〈σ(x)〉 is determined by the
equation,

δSeff

δσ(x)
= 0.

For simplicity we suppose that the ground state expectation value
does not depend on space-time coordinates, i.e.

〈σ(x)〉 ≡ M,

where M is a constant quantity.
In fact, it is a coordinate of the global minimum point of the
thermodynamic potential (TDP) Ω(M; ν,B⊥). In the leading order
of the large-N expansion the TDP is de�ned by the following
expression: ∫

d3xΩ(M; ν,B⊥) = − 1

N
Seff(σ(x))

∣∣∣
σ(x)=M

,
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∫
d3xΩ(M; ν,B⊥) =

∫
d3x

M2

4G
+

i

N
ln

(∫ 2∏
l=1

N∏
b=1

[dψ̄lb][dψlb] exp
(
i

∫ 2∑
k=1

ψ̄kaDkψkad
3x
))

,

where Dk = γ0i∂t + γ1i∇1 + γ2i∇2 + µkγ
0 −M.



Ωren(M; ν,B⊥) = Ωren(M;B⊥)− eB⊥
π

∞∑
n=0

snθ(ν − εn)(ν − εn),

Ωren(M;B⊥) =
M2

πg
+

MeB⊥
π
− (2eB⊥)3/2

π
ζ

(
−1

2
,
M2

2eB⊥

)
,

∂Ωren(M;B⊥)

∂M

∣∣∣
M→0+

= −eB⊥
π
,



Ωren(M; ν,B⊥) = Ωren(M;B⊥)− eB⊥
π

∞∑
n=0

snθ(ν − εn)(ν − εn),

Ωren(M;B⊥) =
M2

πg
+

MeB⊥
π
− (2eB⊥)3/2

π
ζ

(
−1

2
,
M2

2eB⊥

)
,

∂Ωren(M;B⊥)

∂M

∣∣∣
M→0+

= −eB⊥
π
,



Ωren(M; ν,B⊥) = Ωren(M;B⊥)− eB⊥
π

∞∑
n=0

snθ(ν − εn)(ν − εn),

Ωren(M;B⊥) =
M2

πg
+

MeB⊥
π
− (2eB⊥)3/2

π
ζ

(
−1

2
,
M2

2eB⊥

)
,

∂Ωren(M;B⊥)

∂M

∣∣∣
M→0+

= −eB⊥
π
,



Ωun(M; ν) =
M2

4G
−2

∫
d2p

(2π)2
(2E )−2

∫
d2p

(2π)2

(
|E+ν|+|E−ν|−2E

)
.

Ωren(M; ν) = lim
Λ→∞

{
Ωreg (M; ν)

∣∣∣
G=G(Λ)

+
4Λ3(
√

2 + ln(1 +
√

2))

3π2

}
.

V (M) ≡ Ωren(M; ν)
∣∣∣
ν=0

=
M2

πg
+

2M3

3π
.

1

4G
≡ 1

4G (Λ)
=

4Λ ln(1 +
√

2)

π2
+

1

πg
≡ 1

4Gc
+

1

πg
,

where g is a �nite and Λ-independent model parameter with
dimensionality of inverse mass and Gc = π2

16Λ ln(1+
√

2)
.
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The case g > 0, B‖ = 0, i.e. B⊥ = |~B |

0

0.1

0.2

0.3

0.4

0.5 1 1.5 2
eg2B⊥

@
eg2B⊥c

gM0(B⊥, ν)

Ðèñ.: The mass gap M0(B⊥, ν) vs B⊥ in the particular case B‖ = 0 and
g = 5gc ≡ 10µB/e.
The gap is an increasing function vs B⊥ up to a critical value B⊥c , where
it vanishes sharply, i.e. the �rst order phase transition occurs.



The case g > 0, The case B⊥ 6= |~B |.
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Ðèñ.: The (|~B|,B⊥)-phase portrait of the model at g = 5gc ≡ 10µB/e.
The numbers 1 and 2 denote the chirally symmetric and chirally broken
phases, respectively. In the unphysical region B⊥ > |~B|. The boundary
between 1 and 2 phases is the curve of the �rst order phase transitions.



Magnetization

m(|~B|,B⊥) ≡ −dΩren(M; ν,B⊥)

d |~B|

∣∣∣
M=M0(B⊥,ν)

,

m(|~B|,B⊥) = −B⊥
|~B|

∂Ωren(M;B⊥)

∂B⊥

∣∣∣∣∣
M=M0(B⊥,ν)

+

eB⊥
π|~B|

∞∑
n=0

snθ(ν − εn)

(
2ν − ε2

n + enB⊥
εn

) ∣∣∣∣∣
M=M0(B⊥,ν)

,

m(|~B|,B⊥)
∣∣∣
phase 1

=
eB⊥
π

[
3

|~B|
√

2eB⊥ζ(−1/2) + 2µB

]
+

+
2eB⊥
π|~B|

∞∑
n=1

θ(ν −
√

2enB⊥)

(
2ν − 3

2

√
2enB⊥

)
,
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Oscillations of the magnetization The case g > 0.
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Ðèñ.: Magnetization m(|~B|,B⊥)

vs B⊥ at �xed eg2|~B| = 1 and
g = 5gc ≡ 10µB/e.

Ðèñ.: Magnetization m(|~B|,B⊥)

vs B⊥ at �xed eg2|~B| = 1 and
g = 0.5gc ≡ µB/e.

Magnetic oscillations usually occur in the presence of chemical
potential µ. Magnetic oscillations can be induced even at µ = 0 by
tilting the external magnetic �eld with respect to a system plane.



The case g < 0, B‖ = 0, |g | = µB/e.
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Ðèñ.: Mass gap M0(B⊥, ν) and magnetization m(|~B|,B⊥) vs B⊥ in the
particular case B‖ = 0 and |g | = µB/e. Curves 1 and 2 are the plots of

the dimensionless quantities gM0(B⊥, ν) and πgm(|~B|,B⊥)/e,
correspondingly. Here eg2B⊥c1 ≈ 0.81 and eg2B⊥c2 ≈ 0.94.



The case g < 0, B‖ 6= 0, |g | = µB/e.
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Ðèñ.: The (|~B|,B⊥)-phase portrait of the model at |g | = µB/e. The
numbers 1 denote the chirally symmetric phase, whereas the numbers 2
and 3 denote two di�erent chirally broken phases (on the boundary
between 2 and 3 the mass gap changes by a jump). The line BC is a
curve of second order phase transitions; on the other lines the �rst order
phase transitions take place. The unphysical region: B⊥ > |~B|.



The case g < 0,|g | 6= µB/e.
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Ðèñ.: The (x , y)-phase diagram of the model, where x = µB |~B||g | and
y = eg2B⊥, typical for values of c ≡ e|g |/µB < c∗ ≈ 28. Physical region

of the diagram corresponding to B⊥ ≤ |~B| relation lies just below the line
L={(x , y) : y = cx}. (1-the chirally symmetric phase, 2,3 -two di�erent
chirally broken phases. First order phase transitions occur on the solid
curves. On the line αβ second order phase transitions take place.



The case g < 0,|g | 6= µB/e.
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Ðèñ.: The (x , y)-phase diagram of the model, where x = µB |~B||g | and
y = eg2B⊥, typical for values of c ≡ e|g |/µB > c∗ ≈ 28. Physical region

of the diagram, corresponding to B⊥ ≤ |~B| relation, lies just below
and/or to the right of the line L={(x , y) : y = cx}. Other notations are
the same as in the previous �gure.



Numerical estimates in the context of condensed matter

physics

In our numerical estimates we use the following relations :
µB = e/(2me), where me is the electron rest mass, me ≈ 0.5 MeV;
1 Tesla ≈ 700 eV2; e ≈ 1/

√
137, as in graphene.

g < 0, M0F ≡ −vF/g , xF = x/vF ≡ µB |~B||g |/vF ,
In case xF = 1 |B0| = vF/(|g |µB) = M0F/µB .
M0F = 1meV : |~B0| ≈ 14T .
M0F = 10meV : |~B0| ≈ 140T .
The magnitudes of |~B|, at which one can observe phase
transitions, are even less and might be as small as 0.7|~B0|.
If vF = 1/300 and gS = 2, as in graphene, then the slope
factor cF of the line L is approximately equal to 103 at
M0F = 10 meV, whereas it is of order of 104 at M0F = 1 meV,
i.e. cF � c∗ ≈ 28.
Hence, graphene-like planar systems corresponds to the case
c ≡ e|g |/µB > c∗ ≈ 28.



Numerical estimates in the context of condensed matter

physics

Chiral symmetry cannot be restored by an arbitrary strong
external perpendicular magnetic �eld, and the enhancement
e�ect is realized at B⊥ / |~B|. However, tilting the magnetic
�eld away from a normal of the plane, it is possible to restore
the symmetry, if |~B| > 0.7|~B0|. The angle ϕ0 between ~B and
the plane of the system, at which the restoration of the
symmetry occurs.
At |~B| = 1.5|~B0|, M0F = 10 meV sinϕ0 ≈ 0.02, sinϕ0 ≈ 0.2
At |~B| = 1.5|~B0|, M0F = 1 meV sinϕ0 ≈ 0.002
I.e. the restoration of the chiral symmetry occurs at very weak
B⊥-components of the magnetic �eld.



Numerical estimates in the context of condensed matter

physics

gS = 200 and vF = 1/300
At M0F = 1 meV, |~B0| = 0.14 T
At M0F = 10 meV, |~B0| = 1.4 T

We see that the e�ects which are due to the Zeeman interaction
can be observed in real condensed matter systems at reasonable
laboratory magnitudes of external magnetic �elds.



Conclusions

At µB 6= 0 and g > 0, gc = 2µB/e,
At g > gc an arbitrary rather weak external magnetic �eld ~B
induces spontaneous chiral symmetry breaking provided that
there is not too great a deviation of ~B from a vertical as well
as that |~B| < Bc(g), where 0 < Bc(g) <∞.
At 0 < g < gc chiral symmetry cannot be broken by an
external magnetic �eld. (In contrast, at µB = 0 and any values
of g > 0 the chiral symmetry breaking is induced by arbitrary
external magnetic �eld ~B such that ~B⊥ 6= 0.)

Suppose that µB 6= 0, g > gc > 0 and chiral symmetry is
broken, i.e. ~B has a rather large B⊥ component. Then chiral
symmetry can be restored simply by tilting magnetic �eld to a
system plane, i.e. without any increase of its modulus |~B|.



Conclusions

We have shown that at µB 6= 0, g > 0 and arbitrary �xed
|~B| 6= 0 one can observe oscillations of the magnetization in
the region of small values of B⊥.
At µB 6= 0 and g < 0, at non-vanishing Zeeman interaction
the phase portrait of the model contains at least two chirally
nonsymmetric phases. In the phase 2, which is a diamagnetic
one, the enhancement of the chiral symmetry is occurred,
whereas in the paramagnetic phase 3 it is absent.
At g < 0 and c ≡ e|g |/µB < c∗ ≈ 28, su�ciently high values
of |~B| (even at a perpendicular magnetic �eld) restores the
chiral symmetry.
At g < 0 and c ≡ e|g |/µB > c∗ the line L does not cross any
of the critical curves of the �gure. So, in this case at an
arbitrary perpendicular magnetic �eld chiral symmetry cannot
be restored. Tilting the magnetic �eld restores the symmetry.
This situation is typical for graphene-like planar systems.
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