Induced gravity models with polynomial potentials

S.Yu. Vernov

SINP MSU, Moscow
QUARKS-2014, Suzdal, Russia, June 6, 2014

The spatially flat FLRW metric

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

is useful for background solutions.

The spatially flat FLRW metric

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

is useful for background solutions. Models with scalar fields.

The spatially flat FLRW metric

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

is useful for background solutions.
Models with scalar fields.
Scalar-tensor formulation of the modified gravity.

The spatially flat FLRW metric

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

is useful for background solutions.
Models with scalar fields.
Scalar-tensor formulation of the modified gravity.
Models with non-minimally coupled scalar fields are interesting because of their connection with particle physics.
There are models of inflation, where the role of the inflaton is played by the Higgs field non-minimally coupled to gravity. (F.L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659 (2008) 703-706, arXiv:0710.3755).

The spatially flat FLRW metric

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

is useful for background solutions.
Models with scalar fields.
Scalar-tensor formulation of the modified gravity.
Models with non-minimally coupled scalar fields are interesting because of their connection with particle physics.
There are models of inflation, where the role of the inflaton is played by the Higgs field non-minimally coupled to gravity. (F.L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659 (2008) 703-706, arXiv:0710.3755). I will speak about

- properties of numeric solutions

> I.Ya. Aref'eva, N.V. Bulatov, R.V. Gorbachev, S.Yu. V., Class. Quant. Grav. 31 (2014) 065007, arXiv:1206.2801

- exact solutions and integrable system
A. Yu. Kamenshchik, E.O. Pozdeeva, A. Tronconi, G. Venturi, S.Yu. V., Class. Quant. Grav. 31 (2014) 105003, arXiv:1312. 3540

MODEL WITH NON-MINIMAL COUPLING

Models with non-minimally coupled scalar fields are described by the following action:

$$
\begin{equation*}
S=\int d^{4} x \sqrt{-g}\left[U(\phi) R-\frac{1}{2} g^{\mu \nu} \phi_{, \mu} \phi_{, \nu}-V(\phi)\right], \tag{1}
\end{equation*}
$$

where $U(\phi)$ and $V(\phi)$ are differentiable functions of the scalar field ϕ. We assume that $U(\phi) \geqslant 0$.

In the spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) metric with the interval:

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

we get the following system of equations:

$$
\begin{gather*}
6 U H^{2}+6 \dot{U} H=\frac{1}{2} \dot{\phi}^{2}+V, \tag{2}\\
2 U\left(2 \dot{H}+3 H^{2}\right)=-\frac{\dot{\phi}^{2}}{2}-2 \ddot{U}-4 H \dot{U}+V, \tag{3}\\
\ddot{\phi}+3 H \dot{\phi}-6 U^{\prime}\left(\dot{H}+2 H^{2}\right)+V^{\prime}=0 . \tag{4}
\end{gather*}
$$

From Eqs. (2)-(4) we get the following system:

$$
\begin{align*}
& \dot{\phi}=\psi \\
& \dot{\psi}=-3 H \psi-\frac{\left[\left(6 U^{\prime \prime}+1\right) \psi^{2}-4 V\right] U^{\prime}+2 U V^{\prime}}{2\left(3 U^{\prime 2}+U\right)} \tag{5}\\
& \dot{H}=-\frac{2 U^{\prime \prime}+1}{4\left(3 U^{\prime 2}+U\right)} \psi^{2}+\frac{2 U^{\prime} H \psi}{3 U^{\prime 2}+U}-\frac{6 U^{\prime 2} H^{2}}{3 U^{\prime 2}+U}+\frac{U^{\prime} V^{\prime}}{2\left(3 U^{\prime 2}+U\right)} .
\end{align*}
$$

$$
\begin{gather*}
6 U H^{2}+6 \dot{U} H=\frac{1}{2} \dot{\phi}^{2}+V, \tag{2}\\
2 U\left(2 \dot{H}+3 H^{2}\right)=-\frac{\dot{\phi}^{2}}{2}-2 \ddot{U}-4 H \dot{U}+V, \tag{3}\\
\ddot{\phi}+3 H \dot{\phi}-6 U^{\prime}\left(\dot{H}+2 H^{2}\right)+V^{\prime}=0 . \tag{4}
\end{gather*}
$$

From Eqs. (2)-(4) we get the following system:

$$
\begin{align*}
& \dot{\phi}=\psi \\
& \dot{\psi}=-3 H \psi-\frac{\left[\left(6 U^{\prime \prime}+1\right) \psi^{2}-4 V\right] U^{\prime}+2 U V^{\prime}}{2\left(3 U^{\prime 2}+U\right)}, \tag{5}\\
& \dot{H}=-\frac{2 U^{\prime \prime}+1}{4\left(3 U^{\prime 2}+U\right)} \psi^{2}+\frac{2 U^{\prime} H \psi}{3 U^{\prime 2}+U}-\frac{6 U^{\prime 2} H^{2}}{3 U^{\prime 2}+U}+\frac{U^{\prime} V^{\prime}}{2\left(3 U^{\prime 2}+U\right)} .
\end{align*}
$$

Note that equation (2) is not a consequence of system (5).
The system (5) is equivalent to the initial system of equations (2)-(4) if and only if we choose such initial data that equation (2) is satisfied. In other words, if equation (2) is satisfied in the initial moment of time, then from system (5) it follows that equation (2) is satisfied at any moment of time.

Subtracting (2) from Eq. (3), we obtain:

$$
\begin{equation*}
4 U \dot{H}=-\dot{\phi}^{2}-2 \ddot{U}+2 H \dot{U} . \tag{6}
\end{equation*}
$$

Let us introduce new variable

$$
\begin{equation*}
Q \equiv H+\frac{\dot{U}}{2 U}=H+\frac{U^{\prime} \dot{\phi}}{2 U} . \tag{7}
\end{equation*}
$$

Equations (2) and (6) take the following form

$$
\begin{gather*}
3 Q^{2}=\frac{\dot{\phi}^{2}}{4 U}+\frac{3 \dot{U}^{2}}{4 U^{2}}+\frac{V}{2 U} . \tag{8}\\
\dot{Q}-\frac{\dot{U}}{2 U} Q=-\frac{U+3 U^{\prime 2}}{4 U^{2}} \dot{\phi}^{2} . \tag{9}
\end{gather*}
$$

Therefore,

$$
\begin{equation*}
\frac{d}{d t}\left[\frac{Q}{\sqrt{U}}\right]=-\frac{U+3 U^{\prime 2}}{4 U^{2} \sqrt{U}} \dot{\phi}^{2} \leqslant 0 \tag{10}
\end{equation*}
$$

For any $U(\phi)>0$ the function Q / \sqrt{U} decrease monotonically. If for some moments of time t_{1} and $t_{2}>t_{1}$ we have $\phi\left(t_{2}\right)=\phi\left(t_{1}\right)$ and $\phi(t)$ is not a constant at $t_{1} \leqslant t \leqslant t_{2}$, then $Q\left(t_{2}\right)<Q\left(t_{1}\right)$.
The physical reasons of inequality (10) will be clear when we consider this model in the Einstein frame.

THE EQUALITY $Q=0$

Let us consider such a potential that $\exists \phi: V(\phi)<0$.
Equation (2) has the following solutions:

$$
H_{ \pm}=-\frac{\dot{U}}{2 U} \pm \sqrt{\frac{\dot{\phi}^{2}}{12 U}+\frac{U^{\prime 2} \dot{\phi}^{2}}{4 U^{2}}+\frac{V}{6 U}} .
$$

In this case, on the $(\phi, \dot{\phi})$ plane there is the boundary, at any point of which

$$
\begin{equation*}
Q=0 \quad \Leftrightarrow \quad \frac{\dot{\phi}^{2}}{2}+\frac{3\left(U^{\prime} \dot{\phi}\right)^{2}}{2 U}+V=0 \tag{11}
\end{equation*}
$$

This boundary divides the phase plane into two domains: one corresponds to real values of the Hubble parameter $H_{ \pm}$, the other one corresponds to non-real values of this function.
So, if a trajectory starts from the real value of H, then it never crosses the line $Q=0$, but can touch this line.
We will call the domain on the ($\phi, \dot{\phi}$) plane, which corresponds to non-real values of the Hubble parameter as "unreachable domain". The boundary of this domain is defined by (11).

INDUCED GRAVITY MODEL

Let

$$
U(\phi)=\frac{1}{2} \xi \phi^{2}, \quad \xi>0 .
$$

Equation (2) can be rewritten as follows:

$$
\begin{equation*}
H^{2}+2 H \frac{\psi}{\phi}-\frac{V}{3 \xi \phi^{2}}-\frac{1}{6 \xi}\left(\frac{\psi}{\phi}\right)^{2}=0 \tag{12}
\end{equation*}
$$

and has the solutions

$$
\begin{equation*}
H_{ \pm}=-\frac{\psi}{\phi} \pm \sqrt{\left(1+\frac{1}{6 \xi}\right)\left(\frac{\psi}{\phi}\right)^{2}+\frac{V}{3 \xi \phi^{2}}} . \tag{13}
\end{equation*}
$$

INDUCED GRAVITY MODEL

Let

$$
U(\phi)=\frac{1}{2} \xi \phi^{2}, \quad \xi>0 .
$$

Equation (2) can be rewritten as follows:

$$
\begin{equation*}
H^{2}+2 H \frac{\psi}{\phi}-\frac{V}{3 \xi \phi^{2}}-\frac{1}{6 \xi}\left(\frac{\psi}{\phi}\right)^{2}=0 \tag{12}
\end{equation*}
$$

and has the solutions

$$
\begin{equation*}
H_{ \pm}=-\frac{\psi}{\phi} \pm \sqrt{\left(1+\frac{1}{6 \xi}\right)\left(\frac{\psi}{\phi}\right)^{2}+\frac{V}{3 \xi \phi^{2}}} . \tag{13}
\end{equation*}
$$

The function H is a continuous function, so, if $V(\phi)>0$ for all ϕ, then evolution of the Universe in such a model is described either only H_{-}or only H_{+}. It depends on initial conditions.
If $V(\phi)$ is not a positive definite function, then it is possible that a part of evolution is described by H_{+}, whereas the other part - by H_{-}.

HIGGS-LIKE POTENTIAL

We have the system of three first order differential equations

$$
\begin{gather*}
\dot{\phi}=\psi, \tag{14}\\
\dot{\psi}=-3 H \psi-\frac{\psi^{2}}{\phi}+\frac{1}{(1+6 \xi) \phi}\left[4 V(\phi)-\phi V^{\prime}(\phi)\right] \tag{15}\\
\dot{H}=\frac{4 H \psi}{(1+6 \xi) \phi}+\frac{V^{\prime}(\phi)}{(1+6 \xi) \phi}-\frac{12 \xi}{1+6 \xi} H^{2}-\frac{1+2 \xi}{2 \xi(1+6 \xi)}\left(\frac{\psi}{\phi}\right)^{2} . \tag{16}
\end{gather*}
$$

Equation (12) is a condition of the initial data of system (14)-(16).

HIGGS-LIKE POTENTIAL

We have the system of three first order differential equations

$$
\begin{gather*}
\dot{\phi}=\psi, \tag{14}\\
\dot{\psi}=-3 H \psi-\frac{\psi^{2}}{\phi}+\frac{1}{(1+6 \xi) \phi}\left[4 V(\phi)-\phi V^{\prime}(\phi)\right] \tag{15}\\
\dot{H}=\frac{4 H \psi}{(1+6 \xi) \phi}+\frac{V^{\prime}(\phi)}{(1+6 \xi) \phi}-\frac{12 \xi}{1+6 \xi} H^{2}-\frac{1+2 \xi}{2 \xi(1+6 \xi)}\left(\frac{\psi}{\phi}\right)^{2} . \tag{16}
\end{gather*}
$$

Equation (12) is a condition of the initial data of system (14)-(16).
Let us subtract the cosmological constant from the Higgs-like potentials:

$$
\begin{equation*}
V(\phi)=\frac{\varepsilon}{4}\left(\phi^{2}-b^{2}\right)^{2}-\Lambda \tag{17}
\end{equation*}
$$

where $\varepsilon>0, b$ and $\Lambda>0$ are constants.

NUMERIC SOLUTIONS AT $\Lambda=0$

At $\Lambda=0$ the behaviour of solutions is well-known:

Figure: The solution of system (14)-(16) at $\Lambda=0$. We choose $b=1, \varepsilon=10$, $\xi=10$. The initial conditions are $\phi_{0}=2, \psi_{0}=0, H_{0}$ is calculated by (13) with sing " + " $\left(H_{0}=\sqrt{3} / 4\right)$. The Hubble parameter is always H_{+}.

In I.Ya. Aref'eva, N.V. Bulatov, R.V. Gorbachev, S.Yu. V., Class. Quant. Grav. 31 (2014) 065007, we get numeric solutions at $\Lambda_{>}>0$.

NUMERIC SOLUTIONS AT $\Lambda>0$

Numeric calculations give the following solution for system (14)-(16):

Figure: We choose $\Lambda=0.05, b=1, \epsilon=10, \xi=10$.
The initial conditions are $\phi_{0}=2, \psi_{0}=0, H_{0}=H_{0+}$.
On the left picture, brown dashed line corresponds to $H_{+}=0$, brown dashed line with long dashes corresponds to $H_{-}=0$, black line is the boundary of the unreachable domain. On the right picture, brown color means that $H=H_{+}$, whereas $H=H_{-}$is drown in dark green color.

For the induced gravity $Q \equiv H+\frac{\psi}{\phi}$.
We consider $\phi>0$.

$$
\begin{equation*}
\frac{d}{d t}\left[\frac{Q}{\phi}\right]=-\frac{6 \xi+1}{2 \xi \phi}\left(\frac{\psi}{\phi}\right)^{2} \leqslant 0 \tag{18}
\end{equation*}
$$

Let at t_{1} and $t_{2}>t_{1}$ we have $\phi\left(t_{2}\right)=\phi\left(t_{1}\right)$, from (18) we get:

$$
\frac{Q\left(t_{2}\right)}{\phi\left(t_{2}\right)}-\frac{Q\left(t_{1}\right)}{\phi\left(t_{1}\right)}=\frac{1}{\phi\left(t_{1}\right)}\left(Q\left(t_{2}\right)-Q\left(t_{1}\right)\right)=-\frac{6 \xi+1}{2 \xi} \int_{t_{1}}^{t_{2}} \frac{\psi^{2}}{\phi^{3}} d t \leqslant C_{0}<0
$$

So, for any circle value of Q decreases on some positive value, which doesn't tend to zero, when number of circles tends to infinity, hence, only a finite number of circles is necessary to get the value $Q=0$.

THE BOUNDARY OF THE UNREACHABLE DOMAIN

For potential (17) equation $Q=0$ is equivalent to

$$
(1+6 \xi) \dot{\phi}^{2}=2 \wedge-\frac{\varepsilon}{2}\left(\phi^{2}-b^{2}\right)^{2} .
$$

At $\Lambda<\varepsilon b^{4} / 4$ the unreachable domain consists of two separated parts. This curve is not a solution.
To prove it we consider the equation without potential

$$
\dot{H}=-\frac{\dot{\psi}}{\phi}+H \frac{\psi}{\phi}-\frac{2 \xi+1}{2 \xi}\left(\frac{\psi}{\phi}\right)^{2}
$$

Substituting $H=-\frac{\psi}{\phi}$, we get

$$
\frac{6 \xi+1}{\xi}\left(\frac{\psi}{\phi}\right)^{2}=0
$$

So, only a constant solution with $\psi=0$ and $H=0$ can belong to the boundary.

We proved the following statements:

- If a solution tends to the boundary, then it reaches the boundary in a finite time.

We proved the following statements:

- If a solution tends to the boundary, then it reaches the boundary in a finite time.
- The boundary is not a solution.

We proved the following statements:

- If a solution tends to the boundary, then it reaches the boundary in a finite time.
- The boundary is not a solution.
- On the boundary $\dot{Q}<0, H(t)$ evolves from H_{+}to H_{-}.

We proved the following statements:

- If a solution tends to the boundary, then it reaches the boundary in a finite time.
- The boundary is not a solution.
- On the boundary $\dot{Q}<0, H(t)$ evolves from H_{+}to H_{-}.

Let us consider solutions with $H(t)=H_{+} \quad$ and $\quad H(t)=H_{-}$.

Figure: Phase portraits of system (14)-(15) at $\Lambda=0.05, b=1, \epsilon=10, \xi=1$. The function $H(t)$ is given by (12) as H_{+}(left) and H_{-}(right).

MODEL WITH THE HILBERT-EINSTEIN TERM

Let us consider the model with

$$
U(\phi)=\frac{\xi}{2} \phi^{2}+\frac{M_{\mathrm{Pl}}^{2}}{16 \pi} .
$$

THE JORDAN AND EINSTEIN FRAMES

These two frames are related by conformal transformation $g_{\mu \nu}=\Omega^{2} g_{\mu \nu}^{(E)}$:

$$
\begin{gathered}
\Rightarrow \quad R=\Omega^{-2}\left[R^{(E)}-6\left(\square^{(E)} \ln \Omega+g^{\mu \nu(E)} \nabla_{\mu}^{(E)} \ln \Omega \nabla_{\nu}^{(E)} \ln \Omega\right)\right] \\
\text { At } \quad \Omega^{-2}=\frac{\kappa^{2}}{2} U \quad \rightarrow \quad \Omega=\frac{\sqrt{2}}{\kappa \sqrt{U}},
\end{gathered}
$$

where $\kappa^{2} \equiv 8 \pi / M_{\mathrm{Pl}}{ }^{2}$. We get the model with a minimally coupled scalar field and the corresponding FLRW metric has the interval

$$
\begin{gather*}
d s^{2}=-d t_{E}^{2}+a_{E}^{2}\left(t_{E}\right) \delta_{i j} d x^{i} d x^{j}, \tag{19}\\
d t_{E}=\Omega^{-1} d t=\frac{\kappa \sqrt{U}}{\sqrt{2}} d t, \quad a_{E}=\frac{\kappa \sqrt{U}}{\sqrt{2}} a, \\
H_{E} \equiv \frac{d \log a_{E}}{d t_{E}}=\Omega\left(H-\frac{\dot{\Omega}}{\Omega}\right)=\frac{\sqrt{2}}{\kappa \sqrt{U}}\left(H+\frac{\dot{U}}{2 U}\right)=\frac{\sqrt{2}}{\kappa \sqrt{U}} Q .
\end{gather*}
$$

$Q=0$ is equivalent to $H_{E}=0$.

INTEGRABLE COSMOLOGICAL MODELS

The use of the FLRW metric:
$d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)$,
essentially simplify the Einstein equations.
But, only a few cosmological models with scalar fields are integrable.
P. Fré, A. Sagnotti, A.S. Sorin, Nucl. Phys. B 877 (2013) 1028, arXiv:1307.1910.
The standard way to integrate a cosmological model is

- to use the FLRW metric with a parametric time

$$
d s^{2}=N^{2}(\tau) d \tau^{2}-a^{2}(\tau)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right) .
$$

- to guess a suitable lapse function $N(\tau)$.
- to linearize equations, introducing new depending variables.

EQUATIONS WITH PARAMETRIC TIME

Our goal is to find integrable model with non-minimal coupling using the knowledge of integrable models with minimal coupling.
To do this we use the FLRW metric with a parametric time and find the correspondence between potentials and lapse functions in the Einstein and Jordan frames.

$$
\begin{equation*}
\frac{6 U \dot{a}^{2}}{a^{2}}+\frac{6 U^{\prime} \dot{a} \dot{\phi}}{a}=\frac{1}{2} \dot{\phi}^{2}+N^{2} V \tag{20}
\end{equation*}
$$

$\frac{4 U \ddot{a}}{a}+\frac{2 U \dot{a}^{2}}{a^{2}}+\frac{4 U^{\prime} \dot{a} \dot{\phi}}{a}-\frac{4 U \dot{a} \dot{N}}{a N}+2 U^{\prime \prime} \dot{\phi}^{2}+2 U^{\prime} \ddot{\phi}-\frac{2 U^{\prime} \dot{\phi} \dot{N}}{N}=-\frac{1}{2} \dot{\phi}^{2}+N^{2} V$.
The variation with respect to ϕ gives the Klein-Gordon equation:

$$
\begin{gathered}
\ddot{\phi}+\left(3 \frac{\dot{a}}{a}-\frac{\dot{N}}{N}\right) \dot{\phi}-6 U^{\prime}\left[\frac{\ddot{a}}{a}+\frac{\dot{a}^{2}}{a^{2}}\right]+6 \frac{\dot{a} N}{a N} U^{\prime}+N^{2} V^{\prime}=0 \\
{\left[\ddot{\phi}+\left(3 \frac{\dot{a}}{a}-\frac{\dot{N}}{N}\right) \dot{\phi}\right]\left[1+3 \frac{U^{\prime 2}}{U}\right]+\frac{U^{\prime}}{2 U} \dot{\phi}^{2}\left[1+6 U^{\prime \prime}\right]+N^{2}\left[V^{\prime}-2 \frac{U^{\prime}}{U} V\right]=0}
\end{gathered}
$$

CONFORMAL TRANSFORMATION

Let us make the conformal transformation of the metric

$$
g_{\mu \nu}=\frac{U_{0}}{U} \tilde{g}_{\mu \nu}
$$

where U_{0} is a constant, and introduce a new scalar field ϕ such that

$$
\begin{equation*}
\frac{d \tilde{\varphi}}{d \phi}=\frac{\sqrt{U_{0}\left(U+3 U^{\prime 2}\right)}}{U} \Rightarrow \tilde{\varphi}=\int \frac{\sqrt{U_{0}\left(U+3 U^{\prime 2}\right)}}{U} d \phi \tag{23}
\end{equation*}
$$

In this case the action (1) becomes the action for a minimally coupled scalar field:

$$
\begin{equation*}
S=\int d^{4} x \sqrt{-\tilde{g}}\left[U_{0} R(\tilde{g})-\frac{1}{2} \tilde{g}^{\mu \nu} \tilde{\varphi}_{, \mu} \phi_{, \nu}+W(\tilde{\varphi})\right] \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
W(\tilde{\varphi})=\frac{U_{0}^{2} V(\phi(\tilde{\varphi}))}{U^{2}(\phi(\tilde{\varphi}))} \tag{25}
\end{equation*}
$$

The Friedmann metric becomes $d s^{2}=\tilde{N}^{2} d \tau^{2}-\tilde{a}^{2} \overrightarrow{d l}{ }^{2}$, where

$$
\tilde{N}=\sqrt{\frac{U}{U_{0}}} N, \quad \tilde{a}=\sqrt{\frac{U}{U_{0}}} a
$$

We have the following equations:

$$
\begin{gather*}
6 U_{0} \tilde{h}^{2}=\frac{1}{2} \dot{\tilde{\varphi}}^{2}+\tilde{N}^{2} W, \tag{26}\\
4 U_{0} \dot{\tilde{h}}+6 U_{0} \tilde{h}^{2}-4 U_{0} \tilde{\tilde{h}} \frac{\tilde{N}}{\tilde{N}}=-\frac{1}{2} \dot{\tilde{\varphi}}^{2}+\tilde{N}^{2} W, \tag{27}\\
\ddot{\tilde{\varphi}}+\left(3 \tilde{h}-\frac{\dot{\tilde{N}}}{\tilde{N}}\right) \dot{\phi}+\tilde{N}^{2} W_{, \phi}=0, \tag{28}
\end{gather*}
$$

where $\tilde{h} \equiv \dot{\tilde{a}} / \tilde{a}$.

Let us suppose that for some potential W we know the general exact solution of the system of equations (26)-(28): $\tilde{\varphi}(\tau), \quad \tilde{a}(\tau), \quad \tilde{N}(\tau)$. We also suppose that the function $\phi(\tilde{\varphi})$ is known explicitly. In this case, we can also find the general solution of the system of equations (20)-(22) with the potential

$$
\begin{equation*}
V(\phi)=\frac{U^{2}(\phi) W(\tilde{\varphi}(\phi))}{U_{0}^{2}} \tag{29}
\end{equation*}
$$

To do it we really need only

$$
N(\tau)=\sqrt{\frac{U_{0}}{U(\phi(\tilde{\varphi}(\tau))}} \tilde{N}(\tau)
$$

It is the most important information.
After this we consider only equations in the Jordan frame and linearize them.

TWO EXAMPLES OF $U(\phi)$

Let us consider the induced gravity with

$$
\begin{equation*}
U(\phi)=\frac{1}{2} \xi \phi^{2} . \tag{30}
\end{equation*}
$$

In this model

$$
\begin{equation*}
\tilde{\varphi}=\sqrt{\frac{2 U_{0}(1+6 \xi)}{\xi}} \ln \left[\frac{\phi}{\phi_{0}}\right] \quad \text { and } \quad \phi=\phi_{0} e^{\frac{\xi}{2 U_{0}(1+6 \xi)}} \tilde{\varphi} . \tag{31}
\end{equation*}
$$

TWO EXAMPLES OF $U(\phi)$

Let us consider the induced gravity with

$$
\begin{equation*}
U(\phi)=\frac{1}{2} \xi \phi^{2} . \tag{30}
\end{equation*}
$$

In this model

$$
\begin{equation*}
\tilde{\varphi}=\sqrt{\frac{2 U_{0}(1+6 \xi)}{\xi}} \ln \left[\frac{\phi}{\phi_{0}}\right] \quad \text { and } \quad \phi=\phi_{0} e^{\sqrt{2 U_{0}(1+6 \xi)}} \tilde{\varphi} . \tag{31}
\end{equation*}
$$

We put $\xi \neq-1 / 6$.
At $\xi=-1 / 6$ we have $U+3 U^{\prime 2}=0$.
Nontrivial solutions exist for the potential $V=V_{0} \phi^{4}$ only.
(I.Ya. Aref'eva, N.V. Bulatov, R.V. Gorbachev, S.Yu. V, arXiv:1206.2801)

TWO EXAMPLES OF $U(\phi)$

Let us consider the induced gravity with

$$
\begin{equation*}
U(\phi)=\frac{1}{2} \xi \phi^{2} . \tag{30}
\end{equation*}
$$

In this model

$$
\begin{equation*}
\tilde{\varphi}=\sqrt{\frac{2 U_{0}(1+6 \xi)}{\xi}} \ln \left[\frac{\phi}{\phi_{0}}\right] \quad \text { and } \quad \phi=\phi_{0} e^{\sqrt{2 U_{0}(1+6 \xi)}} \tilde{\varphi} . \tag{31}
\end{equation*}
$$

We put $\xi \neq-1 / 6$.
At $\xi=-1 / 6$ we have $U+3 U^{\prime 2}=0$.
Nontrivial solutions exist for the potential $V=V_{0} \phi^{4}$ only.
(I.Ya. Aref'eva, N.V. Bulatov, R.V. Gorbachev, S.Yu. V, arXiv:1206.2801) In the case $\xi=-1 / 6$ we consider models with

$$
\begin{equation*}
U(\phi)=U_{0}-\frac{\phi^{2}}{12}, \tag{32}
\end{equation*}
$$

(K. Bamba, Sh. Nojiri, S.D. Odintsov, D. Sáez-Gómez, arXiv:1401.1328) In this case

$$
\begin{equation*}
\tilde{\varphi}=\sqrt{3 U_{0}} \ln \left[\frac{\sqrt{12 U_{0}}+\phi}{\sqrt{12 U_{0}}-\phi}\right] \quad \text { and } \quad \phi=\sqrt{12 U_{0}} \tanh \left[\frac{\tilde{\varphi}}{\sqrt{12 U_{0}}}\right] . \tag{33}
\end{equation*}
$$

EXPONENTIAL POTENTIAL

Let us consider the cosmological model with a minimally coupled scalar field and the exponential potential:

$$
\begin{equation*}
W=W_{0} e^{2 \sqrt{3} \lambda \tilde{\varphi}} \tag{34}
\end{equation*}
$$

where $\lambda \neq \pm 1$.
D.S. Salopek and J.R. Bond, Phys. Rev. D 42 (1990) 3936-3962.

We put $U_{0}=1 / 4$.
In the induced gravity model the corresponding potential is

$$
V(\phi)=4 W_{0} \xi^{2} \phi^{4}\left(\frac{\phi}{\phi_{0}}\right)^{\lambda \sqrt{\frac{\sqrt{(1+6 \xi)}}{\xi}}=4 W_{0} \xi^{2} \phi^{4}\left(\frac{\phi}{\phi_{0}}\right)^{6 \lambda \Gamma}}
$$

where $\Gamma \equiv \sqrt{\frac{1+6 \xi}{6 \xi}}$.
In the model including the Hilbert-Einstein curvature term plus a scalar field conformally coupled to gravity
$\mathcal{V}=W_{0}\left[1-\frac{\phi^{2}}{3}\right]^{2}\left(\frac{\sqrt{3}+\phi}{\sqrt{3}-\phi}\right)^{3 \lambda}=W_{0} \Theta \Upsilon^{3 \lambda}, \quad \Theta \equiv\left[1-\frac{\phi^{2}}{3}\right]^{2}, \Upsilon \equiv \frac{\sqrt{3}+\phi}{\sqrt{3}-\phi}$.

Table: FAMILIES POTENTIALS OF INTEGRABLE MODELS

W (minimal coupling)	V (induced gravity)	\mathcal{V} (conformal coupling)
$c_{0} e^{2 \sqrt{3} \lambda \tilde{\varphi}}$	$\tilde{c}_{0} \phi^{4+6 \lambda \Gamma}$	$c_{0} \Theta \Upsilon^{3 \lambda}$
$c_{0}+c_{1} e^{\sqrt{3} \tilde{\varphi}}+c_{2} e^{-\sqrt{3} \tilde{\varphi}}$	$\tilde{c}_{0} \phi^{4}+\tilde{c}_{1} \phi^{4+3 \Gamma}+\tilde{c}_{2} \phi^{4-3 \Gamma}$	$\Theta\left[c_{0}+c_{1} \Upsilon^{\frac{3}{2}}+c_{2} \Upsilon^{-\frac{3}{2}}\right]$
$c_{1} e^{2 \sqrt{3} \lambda \tilde{\varphi}}+c_{2} e^{\sqrt{3}(\lambda+1) \tilde{\varphi}}$	$\tilde{c}_{1} \phi^{4+6 \lambda \Gamma}+\tilde{c}_{2} \phi^{4+3(\lambda+1) \Gamma}$	$\Theta\left[c_{1} \Upsilon^{3 \lambda}+c_{2} \Upsilon^{\frac{3}{2}(\lambda+1)}\right]$
$c_{1} e^{2 \sqrt{3} \tilde{\varphi}}+c_{2}$	$\phi^{4}\left[\tilde{c}_{1} \phi^{6 \Gamma}+\tilde{c}_{2}\right]$	$\Theta\left[c_{1} \Upsilon^{3}+c_{2}\right]$
$c_{0} \tilde{\varphi} e^{2 \sqrt{3} \tilde{\varphi}}$	$\sqrt{3} \Gamma \tilde{c}_{0} \phi^{4+6 \Gamma} \ln \left[\frac{\phi}{\phi_{0}}\right]$	$\frac{\sqrt{3}}{2} c_{0} \Theta \Upsilon^{3} \ln (\Upsilon)$
$c_{1} e^{2 \sqrt{3} \lambda \tilde{\varphi}}+c_{2} e^{\frac{2 \sqrt{3}}{\lambda} \tilde{\varphi}}$	$\phi^{4}\left[\tilde{c}_{1} \phi^{6 \lambda \Gamma}+\tilde{c}_{2} \phi^{6 \frac{\Gamma}{\lambda}}\right]$	$\Theta\left[c_{1} \Upsilon^{3 \lambda}+c_{2} \Upsilon^{\frac{3}{\lambda}}\right]$

In Table 1 we present the list of the potentials of integrable cosmological models. The constants $\tilde{c}_{i}=4 \xi^{2} c_{i}, \quad \lambda \neq \pm 1, \quad \lambda \neq 0$.
P. Fré, A. Sagnotti, A.S. Sorin, arXiv:1307.1910 (minimal coupling).

Table: Lapse functions for integrable cases

	\tilde{N} (minimal coupling)	N (induced gravity)	\mathcal{N} (conformal coupling)
1	$\frac{\sqrt{6}}{\sqrt{c_{0}}} e^{-\sqrt{3} \lambda \tilde{\varphi}}$	$\frac{\sqrt{3}}{\sqrt{\xi c_{0}}} \phi^{-3 \lambda \Gamma-1}$	$\sqrt{\frac{18}{c_{0}\left(3-\phi^{2}\right)}} \Upsilon^{-3 \lambda / 2}$
2	1	$\frac{\sqrt{2}}{\sqrt{\xi} \phi}$	$\sqrt{\frac{3}{3-\phi^{2}}}$
3	$e^{-\sqrt{3} \lambda \tilde{\varphi}}$	$\frac{1}{\sqrt{2 \xi}} \phi^{-3 \Gamma \lambda-1}$	$\sqrt{\frac{3}{3-\phi^{2}}} \Upsilon^{-3 \lambda / 2}$
4	$e^{-\sqrt{3} \tilde{\varphi}}$	$\frac{1}{\sqrt{2 \xi}} \phi^{-3 \Gamma-1}$	$\sqrt{\frac{3}{3-\phi^{2}}} \Upsilon^{-3 / 2}$
5	$\frac{e^{-2 \sqrt{3} \tilde{\varphi}}}{\tilde{a}^{3}}$	$\frac{9\left(\Gamma^{2}-1\right)^{2}}{a^{3} \phi^{4}}\left(\frac{\phi}{\phi_{0}}\right)^{-6 \Gamma}$	$\frac{9}{a^{3}} \frac{(\sqrt{3}-\phi)}{(\sqrt{3}+\phi)^{5}}$
6	\tilde{a}^{3}	$\frac{\phi^{2} a^{3}}{3\left(\Gamma^{2}-1\right)}$	$\left(1-\frac{\phi^{2}}{3}\right)^{2} a^{3}$

A.Yu. Kamenshchik, E.O. Pozdeeva, A. Tronconi, G. Venturi and S.Yu. Vernov, Class. Quant. Grav. 31 (2014) 105003, arXiv:1312,3540

Induced gravity model with a power-law potential

The first Friedmann equation with $U(\phi)=\frac{\xi}{2} \phi^{2}$ is

$$
\begin{equation*}
\left(\frac{d}{d \tau} \ln (a \phi)\right)^{2}-\left(\frac{d}{d \tau} \ln \left(\phi^{\Gamma}\right)\right)^{2}=\frac{V N^{2}}{3 \xi \phi^{2}} \tag{35}
\end{equation*}
$$

where $\Gamma \equiv \sqrt{\frac{1+6 \xi}{6 \xi}}$.
Let us consider

$$
\begin{equation*}
V=4 \xi^{2} c_{0} \phi^{2 n}, \quad n=2+3 \lambda \Gamma . \tag{36}
\end{equation*}
$$

Suitable choice is

$$
\begin{equation*}
N=\frac{\sqrt{3}}{\sqrt{\xi c_{0}}} \phi^{1-n} . \tag{37}
\end{equation*}
$$

We introduce new variables u and v :

$$
a \phi \equiv e^{u+v}, \quad \phi^{\Gamma} \equiv e^{u-v},
$$

and obtain Eq. (35) as follows:

$$
\begin{equation*}
\dot{u} \dot{v}=\frac{V N^{2}}{12 \xi \phi^{2}}=1 \quad \Rightarrow \quad \dot{u}=\frac{1}{\dot{v}} . \tag{38}
\end{equation*}
$$

Let us consider

$$
\begin{gather*}
{\left[\ddot{\phi}+\left(3 \frac{\dot{a}}{a}-\frac{\dot{N}}{N}\right) \dot{\phi}+\frac{\dot{\phi}^{2}}{\phi}\right](1+6 \xi)+\left[V^{\prime}-\frac{4}{\phi} V\right] N^{2}=0 .} \\
\Gamma(\ddot{u}-\ddot{v})+(n-2)(\dot{u}-\dot{v})^{2}+3 \Gamma\left(\dot{u}^{2}-\dot{v}^{2}\right)+4(n-2)=0 \tag{39}\\
x=\dot{u} \quad \Rightarrow \quad \dot{v}=\frac{1}{x}
\end{gather*}
$$

equation (39) is the Riccati equation

$$
\dot{x}+\frac{n-2+3 \Gamma}{\Gamma} x^{2}+\frac{n-2-3 \Gamma}{\Gamma}=0
$$

The standard substitution

$$
x=\frac{\Gamma \dot{y}}{(n-2+3 \Gamma) y}
$$

gives the following linear equation:

$$
\ddot{y}+\left(\frac{(n-2)^{2}}{\Gamma^{2}}-9\right) y=0
$$

So, we are able to get the general solution.
The induced gravity cosmological model with power-law potential is integrable.

CONCLUSIONS

- Cosmological models with non-minimally coupling scalar fields has been considered.
- We study dynamics of non-minimally coupled scalar field cosmological models with Higgs-like potentials and a negative cosmological constant.
- In these models the inflationary stage of the Universe evolution changes into a quasi-cyclic stage of the Universe evolution with oscillation behaviour of the Hubble parameter from positive to negative values.
- Depending on the initial conditions the Hubble parameter can perform either one or several cycles before to become negative forever.
- We show how to get integrable models with non-minimal coupling using the suitable parametric time.
- The explicit forms of the self-interaction potentials for six exactly solvable models have been presented.
- We obtain the general solution for one of the integrable models, namely, the induced gravity model with a power-law potential for the self-interaction of the scalar field.

