Stable Exact Cosmological Solutions in Induced Gravity Models

E.O. Pozdeeva

SINP MSU
based on E.O. Pozdeeva, S.Yu. Vernov, arXiv:1401.7550 [gr-qc]
QUARKS 2014

The Lyapunov stability

We study the stability of solutions that tend to fixed points for the induced gravity models in FRWL metric.

Lyapunov stability of fixed points for a general system of the first order autonomic equations

$$
\begin{equation*}
\dot{y}_{k}=F_{k}(y), \quad k=1,2, \ldots, N . \tag{1}
\end{equation*}
$$

We assume that $y(t)$ tends to a fixed point y_{f}. If all solutions of the dynamical system that start out near a fixed (equilibrium) point y_{f},

$$
\begin{equation*}
F_{k}\left(y_{f}\right)=0, \quad k=1,2, \ldots, N \tag{2}
\end{equation*}
$$

stay near y_{f} forever, then y_{f} is a Lyapunov stable point. If all solutions that start out near the equilibrium point y_{f} converge to y_{f}, then the fixed point y_{f} is an asymptotically stable one.
A.M. Lyapunov, Stability of motion, Academic Press, New-York and London, 1966 (in English); A.M. Lyapunov, General problem of stability of motion, GITTL, Moscow-Leningrad, 1950 (in Russian)
L.S. Pontryagin, Ordinary Differential Equations, Adiwes International Series in Mathematics. Addison-Wesley Publ. Comp., London-Paris, 1962 (in English), "Nauka", Moscow, 1982 (in Russian)

The Lyapunov theorem states that to prove the stability of fixed point y_{f} of nonlinear system (1) it is sufficient to prove the stability of this fixed point for the corresponding linearized system (y is a column):

$$
\begin{equation*}
\dot{y}=A y, \quad A_{i k}=\left.\frac{\partial F_{i}(y)}{\partial y_{k}}\right|_{y=y_{f}} . \tag{3}
\end{equation*}
$$

The stability of the linear system means that real parts of all roots λ_{k} of the characteristic equation

$$
\begin{equation*}
\left.\operatorname{det}(A-\lambda I)\right|_{y=y_{f}}=0 \tag{4}
\end{equation*}
$$

are negative. Here I is the identity matrix.
If at least one root of (4) is positive, then the fixed point is unstable.

Cosmological models with non-minimally coupled scalar fields

The models with the Ricci scalar multiplied by a function of the scalar field can be described generally such as

$$
\begin{equation*}
S=\int d^{4} \times \sqrt{-g}\left[U(\phi) R-\frac{1}{2} g^{\mu \nu} \phi_{, \mu} \phi_{, \nu}-V(\phi)\right], \tag{5}
\end{equation*}
$$

where $U(\phi)$ and $V(\phi)$ are differentiable functions of the scalar field ϕ, g is the determinant of the metric tensor $g_{\mu \nu}, R$ the scalar curvature. We use the signature $(-,+,+,+)$.

Friedmann equations

Let us consider the spatially flat FLRW universe with the interval

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

The Friedmann equations derived by variation of action (5) have the following form:

$$
\begin{gather*}
6 U H^{2}+6 \dot{U} H=\frac{1}{2} \dot{\phi}^{2}+V \tag{6}\\
2 U\left(2 \dot{H}+3 H^{2}\right)+4 \dot{U} H+2 \ddot{U}=-\frac{1}{2} \dot{\phi}^{2}+V \tag{7}
\end{gather*}
$$

where the Hubble parameter is the logarithmic derivative of the scale factor: $H=\dot{a} / a$.
The variation of the initial action (5) with respect to ϕ gives

$$
\begin{equation*}
\ddot{\phi}+3 H \dot{\phi}+V^{\prime}=6\left(\dot{H}+2 H^{2}\right) U^{\prime} \tag{8}
\end{equation*}
$$

where the prime indicates the derivative with respect to the scalar field ϕ. Combining early obtained Friedman eqs. (6) and (7) we obtain

$$
\begin{equation*}
4 U \dot{H}-2 \dot{U} H+2 \ddot{U}+\dot{\phi}^{2}=0 . \tag{9}
\end{equation*}
$$

From Eqs. (6)-(9), one can get the following system of the first order equations:
$\dot{\phi}=\psi$,
$\dot{\psi}=-3 H \psi-\frac{\left[\left(6 U^{\prime \prime}+1\right) \psi^{2}-4 V\right] U^{\prime}+2 U V^{\prime}}{2\left(3 U^{\prime 2}+U\right)}$,
$\dot{H}=-\frac{2 U^{\prime \prime}+1}{4\left(3 U^{\prime 2}+U\right)} \psi^{2}+\frac{2 U^{\prime}}{3 U^{\prime 2}+U} H \psi-\frac{6 U^{\prime 2}}{3 U^{\prime 2}+U} H^{2}+\frac{U^{\prime} V^{\prime}}{2\left(3 U^{\prime 2}+U\right)}$.
I.Ya. Aref'eva, N.V. Bulatov, R.V. Gorbachev, S.Yu. Vernov, Class. Quant. Grav. 31 (2014) 065007 (arXiv:1206.2801)

De Sitter solutions

Substituting a constant values $H=H_{f}, \phi=\phi_{f}$ in Eqs. (6) and (8) we get:

$$
\begin{gather*}
6 U\left(\phi_{f}\right) H_{f}^{2}=V\left(\phi_{f}\right), \tag{11}\\
V^{\prime}\left(\phi_{f}\right)=12 H_{f}^{2} U^{\prime}\left(\phi_{f}\right) . \tag{12}
\end{gather*}
$$

From (11) we have

$$
\begin{equation*}
H_{f}^{2}=\frac{V\left(\phi_{f}\right)}{6 U\left(\phi_{f}\right)}, \tag{13}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
2 \frac{U^{\prime}\left(\phi_{f}\right)}{U\left(\phi_{f}\right)}=\frac{V^{\prime}\left(\phi_{f}\right)}{V\left(\phi_{f}\right)} . \tag{14}
\end{equation*}
$$

Stable and unstable de Sitter solutions

To consider the stability of the fixed point we use the Lyapunov theorem and consider the corresponding linearize system. Supposing that

$$
\begin{array}{lll}
\phi(t)=\phi_{f}+\varepsilon \phi_{1}(t), & \psi(t)=\varepsilon \psi_{1}(t), & H(t)=H_{f}+\varepsilon H_{1}(t), \\
U=U_{f}+\varepsilon U_{0}^{\prime} \phi_{1}(t), & U^{\prime}=U_{f}^{\prime}+\varepsilon U_{f}^{\prime \prime} \phi_{1}, & U^{\prime \prime}=U_{f}^{\prime \prime}+\varepsilon U_{f}^{\prime \prime \prime} \phi_{1} \\
V=V_{f}+\varepsilon V_{f}^{\prime} \phi_{1}(t), & V^{\prime}=V_{f}^{\prime}+\varepsilon V_{f}^{\prime \prime} \phi_{1}, & V^{\prime \prime}=V_{f}^{\prime \prime}+\varepsilon V_{f}^{\prime \prime \prime} \phi_{1}
\end{array}
$$

and substituting it to (10) we obtain the following linear system:

$$
\begin{align*}
& \dot{\phi}_{1}=\psi_{1}, \\
& \dot{\psi}_{1}=-3 H_{f} \psi_{1}+\frac{V_{f}^{\prime} U_{f}^{\prime}+2 V_{f} U_{f}^{\prime \prime}-U_{f} V_{f}^{\prime \prime}}{3\left(U_{f}^{\prime}\right)^{2}+U_{f}} \phi_{1}, \tag{15}\\
& \dot{H}_{1}=\frac{\left(U_{f}^{\prime} V_{f}^{\prime \prime}-V_{f}^{\prime} U_{f}^{\prime \prime}\right) \phi_{1}+4 H_{f} U_{f}^{\prime} \psi_{1}-24 H_{f}\left(U_{f}^{\prime}\right)^{2} H_{1}}{2\left(3\left(U_{f}^{\prime}\right)^{2}+U_{f}\right)} .
\end{align*}
$$

For the case of a generic $U(\phi)$ we get the following matrix A, determined system (15):

$$
A=\left\|\begin{array}{ccc}
0 & 1 & 0 \\
\frac{V_{f}^{\prime} U_{f}^{\prime}+2 V_{f} U_{f}^{\prime \prime}-U_{f} V_{f}^{\prime \prime}}{3\left(U_{f}^{\prime}\right)^{2}+U_{f}} & -3 H_{f} & 0 \\
\frac{U_{f}^{\prime} V_{f}^{\prime \prime}-V_{f}^{\prime} U_{f}^{\prime \prime}}{2\left(3\left(U_{f}^{\prime}\right)^{2}+U_{f}\right)} & -\frac{2 H_{f} U_{f}^{\prime}}{3\left(U_{f}^{\prime}\right)^{2}+U_{f}} & -\frac{12 H_{f}\left(U_{f}^{\prime}\right)^{2}}{3\left(U_{f}^{\prime}\right)^{2}+U_{f}}
\end{array}\right\|
$$

and the corresponding characteristic equation
$\operatorname{det}(A-\lambda I)=\left(-\frac{12 H_{f} U_{f}^{\prime}}{3\left(U_{f}^{\prime}\right)^{2}+U_{f}}-\lambda\right)\left(\lambda\left(3 H_{f}+\lambda\right)-\frac{V_{f}^{\prime} U_{f}^{\prime}+2 V_{f} U_{f}^{\prime \prime}-U_{f} V_{f}^{\prime \prime}}{3\left(U_{f}^{\prime}\right)^{2}+U_{f}}\right)$
has the following roots:

$$
\begin{gather*}
\lambda_{1,2}=-\frac{3 H_{f}}{2} \pm \sqrt{\frac{9 H_{f}^{2}}{4}+\frac{V_{f}^{\prime} U_{f}^{\prime}+2 V_{f} U_{f}^{\prime \prime}-U_{f} V_{f}^{\prime \prime}}{3\left(U_{f}^{\prime}\right)^{2}+U_{f}}}, \tag{16}\\
\lambda_{3}=-\frac{12 H_{f} U_{f}^{\prime}}{3\left(U_{f}^{\prime}\right)^{2}+U_{f}} \tag{17}
\end{gather*}
$$

Reconstruction procedure

For the case of induced gravity $U(\phi)=\xi \phi^{2}$ the reconstruction procedure has been proposed in
A.Yu. Kamenshchik, A. Tronconi, G. Venturi, Reconstruction of scalar potentials in induced gravity and cosmology, Phys. Lett. B 702 (2011) 191-196, arXiv:1104.2125.
They got a lot of potential for different types of the Hubble behaviors.
They start from the explicit function $\mathrm{H}(\mathrm{t})$,
solve only LINEAR differential equations and construct the potentials reproducing interesting cosmological evolutions. We use another reconstruction procedure and do not assume $H(t)$. We assume the explicit form of $H=Y(\phi)$.
The two methods supplement each other and together allow one to construct different cosmological models with some required properties.

Let $H=Y(\phi)$ and the function $\mathcal{F}(\phi)$ is defined as follows

$$
\begin{equation*}
\dot{\phi}=\mathcal{F}(\phi) . \tag{18}
\end{equation*}
$$

Substituting $\dot{\phi}$ and $\ddot{\phi}=\mathcal{F}^{\prime} \mathcal{F}$ into Eq. (9), one obtains the following equation:

$$
\begin{equation*}
4 U Y^{\prime}+2\left(\mathcal{F}^{\prime}-Y\right) U^{\prime}+\left(2 U^{\prime \prime}+1\right) \mathcal{F}=0 \tag{19}
\end{equation*}
$$

The potential $V(\phi)$ can be obtained from (6):

$$
\begin{equation*}
V(\phi)=6 U Y^{2}+6 U^{\prime} \mathcal{F} Y-\frac{1}{2} \mathcal{F}^{2} . \tag{20}
\end{equation*}
$$

To find the function $\phi(t)$ and, hence, $H(t)=Y(\phi(t))$ we integrate Eq. (18).
A.Yu. Kamenshchik, A. Tronconi, G. Venturi, and S.Yu. Vernov, Reconstruction of Scalar Potentials in Modified Gravity Models, Phys. Rev. D 87 (2013) 063503 (arXiv:1211.6272)
In terms of functions \mathcal{F} and Y we get the following conditions for fixed point:
$\mathcal{F}\left(\phi_{f}\right)=0, \quad V\left(\phi_{f}\right)=6 U\left(\phi_{f}\right) Y\left(\phi_{f}\right)^{2}, \quad V^{\prime}\left(\phi_{f}\right)=12 U^{\prime}\left(\phi_{f}\right) Y\left(\phi_{f}\right)^{2}$.

Induced gravity cosmological models

In this paper, we are interested in the induced gravity models with

$$
\begin{equation*}
U(\phi)=\frac{\xi}{2} \phi^{2} \tag{21}
\end{equation*}
$$

where ξ is the non-minimal coupling constant.
Equations (6)-(8) for such choice of the function $U(\phi)$ look as follows:

$$
\begin{gather*}
H^{2}=\frac{V}{3 \xi \phi^{2}}+\frac{1}{6 \xi}\left(\frac{\dot{\phi}}{\phi}\right)^{2}-2 H \frac{\dot{\phi}}{\phi} \tag{22}\\
3 H^{2}+2 \dot{H}=-2 \frac{\ddot{\phi}}{\phi}-4 H \frac{\dot{\phi}}{\phi}-\frac{4 \xi+1}{2 \xi}\left(\frac{\dot{\phi}}{\phi}\right)^{2}+\frac{V}{\xi \phi^{2}}, \tag{23}\\
\ddot{\phi}+3 H \dot{\phi}+V^{\prime}-6 \xi \phi\left(2 H^{2}+\dot{H}\right)=0, \tag{24}
\end{gather*}
$$

And the first order differential equations system (10) has the form:

$$
\begin{align*}
& \dot{\phi}=\psi \\
& \dot{\psi}=-3 H \psi-\frac{\psi^{2}}{\phi}+\frac{1}{(1+6 \xi) \phi}\left[4 V(\phi)-\phi V^{\prime}(\phi)\right], \tag{25}\\
& \dot{H}=\frac{4 H \psi}{(1+6 \xi) \phi}+\frac{V^{\prime}(\phi)}{(1+6 \xi) \phi}-\frac{12 \xi}{1+6 \xi} H^{2}-\frac{1+2 \xi}{2 \xi(1+6 \xi)}\left(\frac{\psi}{\phi}\right)^{2} .
\end{align*}
$$

We consider case $\xi \neq-1 / 6$.
For induced gravity models we get from equation (19) that

$$
\begin{equation*}
\mathcal{F}(\phi)=\phi^{-1-1 /(2 \xi)}\left[B_{1}-\int \phi^{(2 \xi+1) /(2 \xi)}\left(Y^{\prime} \phi-Y\right) d \phi\right], \tag{26}
\end{equation*}
$$

where B_{1} is an arbitrary constant.

Let $Y(\phi)$ is a generic quadratic polynomial

$$
\begin{equation*}
H=Y(\phi)=C_{0}+C_{1} \phi+C_{2} \phi^{2}, \tag{27}
\end{equation*}
$$

where C_{0}, C_{1}, and C_{2} are arbitrary constants, but $C_{2} \neq 0$. From (26) we obtain

$$
\begin{equation*}
\mathcal{F}(\phi)=\frac{2\left((8 \xi+1) C_{0}-(4 \xi+1) C_{2} \phi^{2}\right) \xi \phi}{(4 \xi+1)(8 \xi+1)}+B \phi^{-(1+2 \xi) /(2 \xi)}, \tag{28}
\end{equation*}
$$

where B is an arbitrary constant. Note that the function $\mathcal{F}(\phi)$ does not depend on C_{1}. We assume that $\xi \neq-1 / 4$ and $\xi \neq-1 / 8$.
When $B=0$, the function $\mathcal{F}(\phi)$ is a cubic polynomial and the general solution for Eq. (18) can be written in terms of elementary functions.

Figure: Non-monotonic functions $H(t)$, given by (27) for $\phi=\phi_{+}$. The values of parameter are $\xi=1, C_{2}=7 / 2$, and $C_{0}=5 / 8$, and $t_{0}=2 \ln (8 / 9)$. The parameter $C_{1}=-1$ (left), $C_{1}=-2$ (middle), $C_{1}=-2.7$ (right).

For $C_{0} \neq 0$ we obtain

$$
\begin{equation*}
\phi_{ \pm}(t)= \pm \frac{\sqrt{(8 \xi+1) C_{0}}}{\sqrt{(8 \xi+1) C_{0} e^{-\omega\left(t-t_{0}\right)}+(4 \xi+1) C_{2}}} \tag{29}
\end{equation*}
$$

where $\omega=4 \xi C_{0} /(4 \xi+1)$, t_{0} is an arbitrary integration constant. At $C_{0}=0$ the general solution for Eq. (18) is

$$
\begin{equation*}
\tilde{\phi}_{ \pm}(t)= \pm \frac{\sqrt{8 \xi+1}}{\sqrt{4 \xi C_{2}\left(t-t_{0}\right)}} \tag{30}
\end{equation*}
$$

Solutions that correspond to $\mathcal{F}(\phi)=0$ are

$$
\begin{equation*}
\phi_{f_{0}}=0, \quad \phi_{f_{ \pm}}= \pm \frac{\sqrt{(8 \xi+1) C_{0}}}{\sqrt{(4 \xi+1) C_{2}}} \tag{31}
\end{equation*}
$$

Note that $\phi_{f_{0}}$ is a singular point for system (25).

For de Sitter solutions with $\phi_{f_{ \pm}}$the value of the de Sitter Hubble parameter is

$$
H_{f}=C_{0}+C_{1} \phi_{f}+C_{2} \phi_{f}^{2} .
$$

The corresponding potential is the sixth degree polynomial:

$$
\begin{align*}
V(\phi) & =\frac{(16 \xi+3)(6 \xi+1) \xi}{(8 \xi+1)^{2}} C_{2}^{2} \phi^{6}+\frac{6(6 \xi+1) \xi}{8 \xi+1} C_{1} C_{2} \phi^{5}+ \\
& +\left[3 \xi C_{1}^{2}+\frac{2(6 \xi+1)(20 \xi+3) \xi}{(8 \xi+1)(4 \xi+1)} C_{0} C_{2}\right] \phi^{4}+ \tag{32}\\
& +\frac{6(6 \xi+1) \xi}{4 \xi+1} C_{0} C_{1} \phi^{3}+\frac{(16 \xi+3)(6 \xi+1) \xi}{(4 \xi+1)^{2}} C_{0}^{2} \phi^{2} .
\end{align*}
$$

To consider the stability of solutions of induced gravity models we denote $y(t)=(\phi(t), \psi(t), H(t))$. Let $y_{f}=\left(\phi_{f}, \psi_{f}, H_{f}\right)$ is a fixed point. We get $\psi_{f}=0$. Also from Eqs. (22) and (24) we obtain:

$$
\begin{equation*}
V\left(\phi_{f}\right)=3 \xi \phi_{f}^{2} H_{f}^{2}, \quad V^{\prime}\left(\phi_{f}\right)=12 \xi \phi_{f} H_{f}^{2}, \tag{33}
\end{equation*}
$$

consequently,

$$
\begin{equation*}
V\left(\phi_{f}\right)=\frac{1}{4} \phi_{f} V^{\prime}\left(\phi_{f}\right) . \tag{34}
\end{equation*}
$$

Let

$$
\begin{equation*}
\phi(t)=\phi_{f}+\varepsilon \phi_{1}(t), \quad \psi(t)=\varepsilon \psi_{1}(t), \quad H(t)=H_{f}+\varepsilon H_{1}(t) \tag{35}
\end{equation*}
$$

To first order in ε we obtain the following system of linear equations

$$
\begin{align*}
& \dot{\phi}_{1}=\psi_{1} \\
& \dot{\psi}_{1}=\frac{1}{1+6 \xi}\left[3 \frac{V^{\prime}\left(\phi_{f}\right)}{\phi_{f}}-V^{\prime \prime}\left(\phi_{f}\right)\right] \phi_{1}-3 H_{f} \psi_{1}, \tag{36}\\
& \dot{H}_{1}=\frac{V^{\prime \prime}\left(\phi_{f}\right) \phi_{f}-V^{\prime}\left(\phi_{f}\right)}{(1+6 \xi) \phi_{f}^{2}} \phi_{1}+\frac{4 H_{f}}{(1+6 \xi) \phi_{f}} \psi_{1}-\frac{24 \xi H_{f}}{1+6 \xi} H_{1} .
\end{align*}
$$

With the result that we get the following matrix

$$
A=\left\|\begin{array}{ccc}
0 & 1 & 0 \tag{37}\\
\frac{36 \xi H_{f}^{2}-V^{\prime \prime}\left(\phi_{f}\right)}{1+6 \xi} & -3 H_{f} & 0 \\
\frac{V^{\prime \prime}\left(\phi_{f}\right) \phi_{f}-V^{\prime}\left(\phi_{f}\right)}{(1+6 \xi) \phi_{f}^{2}} & \frac{4 H_{f}}{(1+6 \xi) \phi_{f}} & -\frac{24 \xi H_{f}}{1+6 \xi}
\end{array}\right\|
$$

and roots of Eq. (4) are as follows:

$$
\begin{align*}
& \lambda_{1}=-\frac{3}{2} H_{f}+\frac{\sqrt{9(22 \xi+1) H_{f}^{2}-4 V^{\prime \prime}\left(\phi_{f}\right)}}{2 \sqrt{1+6 \xi}}, \\
& \lambda_{2}=-\frac{3}{2} H_{f}-\frac{\sqrt{9(22 \xi+1) H_{f}^{2}-4 V^{\prime \prime}\left(\phi_{f}\right)}}{2 \sqrt{1+6 \xi}}, \tag{38}\\
& \lambda_{3}=-\frac{24 \xi H_{f}}{1+6 \xi} .
\end{align*}
$$

So, we obtain the conditions on H_{f} and $V^{\prime \prime}\left(\phi_{f}\right)$ that are sufficient for the stability of de Sitter solutions in induced gravity models. If we assume $\xi>0$, then we get that a fixed point can be stable for $H_{f}>0$ only.

Stability conditions

Let us consider the stability conditions for solutions, describing by formulae (27) and (29). Using (27), we get the following conditions on parameters of the potentials:
$\lambda_{3} \Leftrightarrow H_{f}>0 \Leftrightarrow \begin{cases}C_{1}>-\frac{2(6 \xi+1) \sqrt{C_{0} C_{2}}}{\sqrt{(4 \xi+1)(8 \xi+1)}}, & \text { for } \phi_{f}=\phi_{f_{+}} \equiv \frac{\sqrt{(8 \xi+1) C_{0}}}{\sqrt{(4 \xi+1) C_{2}}}, \\ C_{1}<\frac{2(6 \xi+1) \sqrt{C_{C} C_{2}}}{\sqrt{(4 \xi+1)(8 \xi+1)}}, & \text { for } \phi_{f}=\phi_{f_{-}} \equiv-\frac{\sqrt{(8 \xi+1) C_{0}}}{\sqrt{(4 \xi+1) C_{2}}} .\end{cases}$
We consider the case $C_{0}>0, C_{2}>0$.

If a solution tends to $\phi_{f_{+}}$, then

$$
\begin{align*}
& \lambda_{1+}=-\frac{3}{2} H_{f_{+}}+\frac{3 \sqrt{C_{0}(8 \xi+1)}}{2 \sqrt{C_{2}(4 \xi+1)}}\left(C_{1}+\frac{2(14 \xi+3) \sqrt{C_{0} C_{2}}}{3 \sqrt{(8 \xi+1)(4 \xi+1)}}\right), \tag{39}\\
& \lambda_{2+}=-\frac{3}{2} H_{f_{+}}-\frac{3 \sqrt{C_{0}(8 \xi+1)}}{2 \sqrt{C_{2}(4 \xi+1)}}\left(C_{1}+\frac{2(14 \xi+3) \sqrt{C_{0} C_{2}}}{3 \sqrt{(8 \xi+1)(4 \xi+1)}}\right) .
\end{align*}
$$

If a solution tends to $\phi_{f_{+}}$, then

$$
\begin{align*}
& \lambda_{1+}=-\frac{3}{2} H_{f_{+}}+\frac{3 \sqrt{C_{0}(8 \xi+1)}}{2 \sqrt{C_{2}(4 \xi+1)}}\left(C_{1}+\frac{2(14 \xi+3) \sqrt{C_{0} C_{2}}}{3 \sqrt{(8 \xi+1)(4 \xi+1)}}\right), \tag{39}\\
& \lambda_{2+}=-\frac{3}{2} H_{f_{+}}-\frac{3 \sqrt{C_{0}(8 \xi+1)}}{2 \sqrt{C_{2}(4 \xi+1)}}\left(C_{1}+\frac{2(14 \xi+3) \sqrt{C_{0} C_{2}}}{3 \sqrt{(8 \xi+1)(4 \xi+1)}}\right) .
\end{align*}
$$

Analogically, if a solution tends to ϕ_{f-}, then

$$
\begin{align*}
& \lambda_{1-}=-\frac{3}{2} H_{f_{-}}+\frac{3 \sqrt{C_{0}(8 \xi+1)}}{2 \sqrt{C_{2}(4 \xi+1)}}\left(C_{1}-\frac{2(14 \xi+3) \sqrt{C_{0} C_{2}}}{3 \sqrt{(8 \xi+1)(4 \xi+1)}}\right), \tag{40}\\
& \lambda_{2-}=-\frac{3}{2} H_{f_{-}}-\frac{3 \sqrt{C_{0}(8 \xi+1)}}{2 \sqrt{C_{2}(4 \xi+1)}}\left(C_{1}-\frac{2(14 \xi+3) \sqrt{C_{0} C_{2}}}{3 \sqrt{(8 \xi+1)(4 \xi+1)}}\right) .
\end{align*}
$$

We obtain that all λ_{i} are real.

We get conditions under that λ_{i} are negative. Using that $H=Y(\phi)=C_{0}+C_{1} \phi+C_{2} \phi^{2}$ in considering model we obtain

$$
\begin{equation*}
\lambda_{1+}=-\frac{4 \xi}{4 \xi+1} C_{0} . \tag{41}
\end{equation*}
$$

We consider the case $C_{0}>0$ and $\xi>0$, hence, $\lambda_{1+}<0$. So, the stability of the fixed point $\phi_{f_{+}}$depends on sign of

$$
\begin{equation*}
\lambda_{2+}=-3 \frac{\sqrt{(8 \xi+1) C_{0}}}{\sqrt{(4 \xi+1) C_{2}}} C_{1}-\frac{32 \xi+6}{4 \xi+1} C_{0} \tag{42}
\end{equation*}
$$

We see that

$$
\begin{equation*}
\lambda_{2_{+}}<0 \quad \Leftrightarrow \quad C_{1}>-\frac{2(16 \xi+3) \sqrt{C_{0} C_{2}}}{3 \sqrt{(8 \xi+1)(4 \xi+1)}} \tag{43}
\end{equation*}
$$

To explore the stability of the stable point $\phi_{f_{-}}$, we consider $\lambda_{i_{ \pm}}$as functions of the parameter C_{1} and take notice that $\lambda_{1_{-}}\left(C_{1}\right)=\lambda_{2_{+}}\left(-C_{1}\right)$ and $\lambda_{2-}\left(C_{1}\right)=\lambda_{1_{+}}\left(-C_{1}\right)$. Consequently, we get

$$
\begin{gather*}
\lambda_{1-}=3 \frac{\sqrt{(8 \xi+1) C_{0}}}{\sqrt{(4 \xi+1) C_{2}}} C_{1}-\frac{32 \xi+6}{4 \xi+1} C_{0}, \quad \lambda_{2-}=-\frac{4 \xi}{4 \xi+1} C_{0} . \tag{44}\\
\lambda_{1-}<0 \quad \Leftrightarrow \quad C_{1}<\frac{2(16 \xi+3) \sqrt{C_{0} C_{2}}}{3 \sqrt{(8 \xi+1)(4 \xi+1)}} . \tag{45}
\end{gather*}
$$

Now we are ready to analyse the stability of the fixed points. Let us start with $\phi_{f_{+}}$. We consider only the case $C_{0}>0, C_{2}>0$ and $\xi>0$. We see that $\lambda_{1_{+}}<0$ and $\lambda_{3_{+}}<0$ is a more strong restriction on C_{1} than $\lambda_{2_{+}}<0$. Therefore, the fixed point $\phi_{f_{+}}$is stable at $\lambda_{2_{+}}<0$. The analogous reasoning gives that $\phi_{f_{-}}$is stable at $\lambda_{1_{-}}<0$.

Now let us analyse the stability of solutions with nonmonotonic Hubble parameter. For such a solution that tends to a stable point $\phi_{f_{+}}$condition (43) should be satisfied. So, we get a such stable solution at

$$
\begin{gather*}
-\frac{2(16 \xi+3) \sqrt{C_{0} C_{2}}}{3 \sqrt{(8 \xi+1)(4 \xi+1)}}<C_{1}<0, \quad \phi(t)=\phi_{+}(t) \tag{46}\\
0<C_{1}<\frac{2(16 \xi+3) \sqrt{C_{0} C_{2}}}{3 \sqrt{(8 \xi+1)(4 \xi+1)}}, \quad \phi(t)=\phi_{-}(t)
\end{gather*}
$$

For example, we get that at $\xi=1, C_{2}=7 / 2$ and $C_{0}=5 / 8$, solutions are stable if $C_{1}>-19 \sqrt{7} / 18 \approx-2.7927$. Therefore, solutions, presented in Fig. 1, are stable.

Conclusion

We have analysed the stability of kink-type solutions for the induced gravity models in the FLRW metric. Using the Lyapunov theorem we have found sufficient conditions of stability. The obtained results allow us to prove that the exact solutions, with non-monotonic behaviors of the Hubble parameter, are stable if condition (46) is satisfied.

Thank you for attention

