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The Lyapunov stability

We study the stability of solutions that tend to fixed points for the
induced gravity models in FRWL metric.

Lyapunov stability of fixed points for a general system of the first order
autonomic equations

ẏk = Fk(y), k = 1, 2, . . . ,N . (1)
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We assume that y(t) tends to a fixed point yf . If all solutions of the
dynamical system that start out near a fixed (equilibrium) point yf ,

Fk(yf ) = 0, k = 1, 2, . . . ,N (2)

stay near yf forever, then yf is a Lyapunov stable point.
If all solutions that start out near the equilibrium point yf converge to yf ,
then the fixed point yf is an asymptotically stable one.

A.M. Lyapunov, Stability of motion, Academic Press, New-York and
London, 1966 (in English); A.M. Lyapunov, General problem of stability

of motion, GITTL, Moscow–Leningrad, 1950 (in Russian)
L.S. Pontryagin, Ordinary Differential Equations, Adiwes International
Series in Mathematics. Addison-Wesley Publ. Comp., London–Paris,
1962 (in English), ”Nauka”, Moscow, 1982 (in Russian)
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The Lyapunov theorem states that to prove the stability of fixed point yf
of nonlinear system (1) it is sufficient to prove the stability of this fixed
point for the corresponding linearized system (y is a column):

ẏ = Ay , Aik =
∂Fi (y)

∂yk
|y=yf . (3)

The stability of the linear system means that real parts of all roots λk of
the characteristic equation

det (A− λI ) |y=yf = 0 (4)

are negative. Here I is the identity matrix.
If at least one root of (4) is positive, then the fixed point is unstable.
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Cosmological models with non-minimally coupled scalar

fields

The models with the Ricci scalar multiplied by a function of the scalar
field can be described generally such as

S =

∫

d4x
√−g

[

U(φ)R − 1

2
gµνφ,µφ,ν − V (φ)

]

, (5)

where U(φ) and V (φ) are differentiable functions of the scalar field φ, g
is the determinant of the metric tensor gµν , R the scalar curvature. We
use the signature (−,+,+,+).
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Friedmann equations

Let us consider the spatially flat FLRW universe with the interval

ds2 = − dt2 + a2(t)
(

dx21 + dx22 + dx23
)

.

The Friedmann equations derived by variation of action (5) have the
following form:

6UH2 + 6U̇H =
1

2
φ̇2 + V , (6)

2U
(

2Ḣ + 3H2
)

+ 4U̇H + 2Ü = − 1

2
φ̇2 + V , (7)

where the Hubble parameter is the logarithmic derivative of the scale
factor: H = ȧ/a.
The variation of the initial action (5) with respect to φ gives

φ̈+ 3Hφ̇+ V ′ = 6
(

Ḣ + 2H2
)

U ′ , (8)

where the prime indicates the derivative with respect to the scalar field φ.
Combining early obtained Friedman eqs. (6) and (7) we obtain

4UḢ − 2U̇H + 2Ü + φ̇2 = 0. (9)
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From Eqs. (6)–(9), one can get the following system of the first order
equations:

φ̇ = ψ,

ψ̇ = − 3Hψ −
[

(6U ′′ + 1)ψ2 − 4V
]

U ′ + 2UV ′

2
(

3U ′2 + U
) ,

Ḣ = − 2U ′′ + 1

4
(

3U ′2 + U
)ψ2 +

2U ′

3U ′2 + U
Hψ − 6U ′2

3U ′2 + U
H2 +

U ′V ′

2
(

3U ′2 + U
) .

(10)

I.Ya. Aref’eva, N.V. Bulatov, R.V. Gorbachev, S.Yu. Vernov, Class.
Quant. Grav. 31 (2014) 065007 (arXiv:1206.2801)
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De Sitter solutions

Substituting a constant values H = Hf , φ = φf in Eqs. (6) and (8) we
get:

6U(φf )H
2
f = V (φf ), (11)

V ′(φf ) = 12H2
f U

′(φf ). (12)

From (11) we have

H2
f =

V (φf )

6U(φf )
, (13)

therefore,

2
U ′(φf )

U(φf )
=

V ′(φf )

V (φf )
. (14)

8 / 28



Stable and unstable de Sitter solutions

To consider the stability of the fixed point we use the Lyapunov theorem
and consider the corresponding linearize system. Supposing that

φ(t) = φf + εφ1(t), ψ(t) = εψ1(t), H(t) = Hf + εH1(t),

U = Uf + εU ′
0φ1(t), U ′ = U ′

f + εU ′′
f φ1, U ′′ = U ′′

f + εU ′′′
f φ1

V = Vf + εV ′
f φ1(t), V ′ = V ′

f + εV ′′
f φ1, V ′′ = V ′′

f + εV ′′′
f φ1

and substituting it to (10) we obtain the following linear system:

φ̇1 = ψ1,

ψ̇1 = − 3Hfψ1 +
V ′
f U

′
f + 2Vf U

′′
f − Uf V

′′
f

3(U ′
f )

2 + Uf

φ1,

Ḣ1 =
(U ′

f V
′′
f − V ′

f U
′′
f )φ1 + 4HfU

′
f ψ1 − 24Hf (U

′
f )

2H1

2(3(U ′
f )

2 + Uf )
.

(15)
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For the case of a generic U(φ) we get the following matrix A, determined
system (15):

A =

0 1 0
V ′
f U

′
f + 2VfU

′′
f − Uf V

′′
f

3(U ′
f )

2 + Uf

−3Hf 0

U ′
f V

′′
f − V ′

f U
′′
f

2(3(U ′
f )

2 + Uf )
− 2HfU

′
f

3(U ′
f )

2 + Uf

− 12Hf (U
′
f )

2

3(U ′
f )

2 + Uf

and the corresponding characteristic equation

det(A−λI ) =
(

− 12HfU
′
f

3(U ′
f )

2 + Uf

− λ

)(

λ(3Hf + λ)− V ′
f U

′
f + 2Vf U

′′
f − Uf V

′′
f

3(U ′
f )

2 + Uf

)

=

has the following roots:

λ1,2 = −3Hf

2
±
√

9H2
f

4
+

V ′
f U

′
f + 2Vf U

′′
f − Uf V

′′
f

3(U ′
f )

2 + Uf

, (16)

λ3 = − 12HfU
′
f

3(U ′
f )

2 + Uf

. (17)
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Reconstruction procedure

For the case of induced gravity U(φ) = ξφ2 the reconstruction procedure
has been proposed in
A.Yu. Kamenshchik, A. Tronconi, G. Venturi, Reconstruction of scalar

potentials in induced gravity and cosmology,
Phys. Lett. B 702 (2011) 191–196, arXiv:1104.2125.
They got a lot of potential for different types of the Hubble behaviors.
They start from the explicit function H(t),
solve only LINEAR differential equations and
construct the potentials reproducing interesting cosmological evolutions.
We use another reconstruction procedure and do not assume H(t).
We assume the explicit form of H = Y (φ).
The two methods supplement each other and together allow one to
construct different cosmological models with some required properties.
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Let H = Y (φ) and the function F(φ) is defined as follows

φ̇ = F(φ). (18)

Substituting φ̇ and φ̈ = F ′F into Eq. (9), one obtains the following
equation:

4UY ′ + 2(F ′ − Y )U ′ + (2U ′′ + 1)F = 0. (19)

The potential V (φ) can be obtained from (6):

V (φ) = 6UY 2 + 6U ′FY − 1

2
F2. (20)

To find the function φ(t) and, hence, H(t) = Y (φ(t)) we integrate
Eq. (18).
A.Yu. Kamenshchik, A. Tronconi, G. Venturi, and S.Yu. Vernov,
Reconstruction of Scalar Potentials in Modified Gravity Models, Phys.
Rev. D 87 (2013) 063503 (arXiv:1211.6272)
In terms of functions F and Y we get the following conditions for fixed
point:

F(φf ) = 0, V (φf ) = 6U(φf )Y (φf )
2, V ′(φf ) = 12U ′(φf )Y (φf )

2.
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Induced gravity cosmological models

In this paper, we are interested in the induced gravity models with

U(φ) =
ξ

2
φ2 , (21)

where ξ is the non-minimal coupling constant.
Equations (6)–(8) for such choice of the function U(φ) look as follows:

H2 =
V

3ξφ2
+

1

6ξ

(

φ̇

φ

)2

− 2H
φ̇

φ
, (22)

3H2 + 2Ḣ = − 2
φ̈

φ
− 4H

φ̇

φ
− 4ξ + 1

2ξ

(

φ̇

φ

)2

+
V

ξφ2
, (23)

φ̈+ 3Hφ̇+ V ′ − 6ξφ
(

2H2 + Ḣ
)

= 0, (24)
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And the first order differential equations system (10) has the form:

φ̇ = ψ,

ψ̇ = − 3Hψ − ψ2

φ
+

1

(1 + 6ξ)φ
[4V (φ) − φV ′(φ)],

Ḣ =
4Hψ

(1 + 6ξ)φ
+

V ′(φ)

(1 + 6ξ)φ
− 12ξ

1 + 6ξ
H2 − 1 + 2ξ

2ξ(1 + 6ξ)

(

ψ

φ

)2

.

(25)

We consider case ξ 6= −1/6.
For induced gravity models we get from equation (19) that

F(φ) = φ−1−1/(2ξ)

[

B1 −
∫

φ(2ξ+1)/(2ξ) (Y ′φ− Y ) dφ

]

, (26)

where B1 is an arbitrary constant.
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Let Y (φ) is a generic quadratic polynomial

H = Y (φ) = C0 + C1φ+ C2φ
2, (27)

where C0, C1, and C2 are arbitrary constants, but C2 6= 0. From (26) we
obtain

F(φ) =
2
(

(8ξ + 1)C0 − (4ξ + 1)C2φ
2
)

ξφ

(4ξ + 1)(8ξ + 1)
+ Bφ−(1+2ξ)/(2ξ), (28)

where B is an arbitrary constant. Note that the function F(φ) does not
depend on C1. We assume that ξ 6= −1/4 and ξ 6= −1/8.
When B = 0, the function F(φ) is a cubic polynomial and the general
solution for Eq. (18) can be written in terms of elementary functions.
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Figure: Non-monotonic functions H(t), given by (27) for φ = φ+. The values
of parameter are ξ = 1, C2 = 7/2, and C0 = 5/8, and t0 = 2 ln(8/9). The
parameter C1 = −1 (left), C1 = −2 (middle), C1 = −2.7 (right).
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For C0 6= 0 we obtain

φ±(t) = ±
√

(8ξ + 1)C0
√

(8ξ + 1)C0e−ω(t−t0) + (4ξ + 1)C2

, (29)

where ω = 4ξC0/(4ξ + 1), t0 is an arbitrary integration constant.
At C0 = 0 the general solution for Eq. (18) is

φ̃±(t) = ±
√
8ξ + 1

√

4ξC2(t − t0)
. (30)

Solutions that correspond to F(φ) = 0 are

φf0 = 0, φf± = ±
√

(8ξ + 1)C0
√

(4ξ + 1)C2

, (31)

Note that φf0 is a singular point for system (25).
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For de Sitter solutions with φf± the value of the de Sitter Hubble
parameter is

Hf = C0 + C1φf + C2φ
2
f .

The corresponding potential is the sixth degree polynomial:

V (φ) =
(16ξ + 3)(6ξ + 1)ξ

(8ξ + 1)2
C 2
2φ

6 +
6(6ξ + 1)ξ

8ξ + 1
C1C2φ

5 +

+

[

3ξC 2
1 +

2(6ξ + 1)(20ξ + 3)ξ

(8ξ + 1)(4ξ + 1)
C0C2

]

φ4 +

+
6(6ξ + 1)ξ

4ξ + 1
C0C1φ

3 +
(16ξ + 3)(6ξ + 1)ξ

(4ξ + 1)2
C 2
0φ

2 .

(32)
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To consider the stability of solutions of induced gravity models we denote
y(t) = (φ(t), ψ(t),H(t)). Let yf = (φf , ψf ,Hf ) is a fixed point. We get
ψf = 0. Also from Eqs. (22) and (24) we obtain:

V (φf ) = 3ξφ2fH
2
f , V ′(φf ) = 12ξφfH

2
f , (33)

consequently,

V (φf ) =
1

4
φf V

′(φf ). (34)
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Let

φ(t) = φf + εφ1(t), ψ(t) = εψ1(t), H(t) = Hf + εH1(t). (35)

To first order in ε we obtain the following system of linear equations

φ̇1 = ψ1,

ψ̇1 =
1

1 + 6ξ

[

3
V ′(φf )

φf
− V ′′(φf )

]

φ1 − 3Hfψ1,

Ḣ1 =
V ′′(φf )φf − V ′(φf )

(1 + 6ξ)φ2f
φ1 +

4Hf

(1 + 6ξ)φf
ψ1 −

24ξHf

1 + 6ξ
H1.

(36)
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With the result that we get the following matrix

A =

0 1 0

36ξH2
f −V ′′(φf )
1+6ξ −3Hf 0

V ′′(φf )φf −V ′(φf )
(1+6ξ)φ2

f

4Hf

(1+6ξ)φf
− 24ξHf

1+6ξ

(37)

and roots of Eq. (4) are as follows:

λ1 = − 3

2
Hf +

√

9(22ξ + 1)H2
f − 4V ′′(φf )

2
√
1 + 6ξ

,

λ2 = − 3

2
Hf −

√

9(22ξ + 1)H2
f − 4V ′′(φf )

2
√
1 + 6ξ

,

λ3 = − 24ξHf

1 + 6ξ
.

(38)

So, we obtain the conditions on Hf and V ′′(φf ) that are sufficient for the
stability of de Sitter solutions in induced gravity models. If we assume
ξ > 0, then we get that a fixed point can be stable for Hf > 0 only.
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Stability conditions

Let us consider the stability conditions for solutions, describing by
formulae (27) and (29). Using (27), we get the following conditions on
parameters of the potentials:

λ3 ⇔ Hf > 0 ⇔























C1 > − 2(6ξ+1)
√
C0C2√

(4ξ+1)(8ξ+1)
, forφf = φf+ ≡

√
(8ξ+1)C0√
(4ξ+1)C2

,

C1 <
2(6ξ+1)

√
C0C2√

(4ξ+1)(8ξ+1)
, forφf = φf− ≡ −

√
(8ξ+1)C0√
(4ξ+1)C2

.

We consider the case C0 > 0, C2 > 0.
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If a solution tends to φf+ , then

λ1+ = − 3

2
Hf+ +

3
√

C0(8ξ + 1)

2
√

C2(4ξ + 1)

(

C1 +
2(14ξ + 3)

√
C0C2

3
√

(8ξ + 1)(4ξ + 1)

)

,

λ2+ = − 3

2
Hf+ − 3

√

C0(8ξ + 1)

2
√

C2(4ξ + 1)

(

C1 +
2(14ξ + 3)

√
C0C2

3
√

(8ξ + 1)(4ξ + 1)

)

.

(39)
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If a solution tends to φf+ , then

λ1+ = − 3

2
Hf+ +

3
√

C0(8ξ + 1)

2
√

C2(4ξ + 1)

(

C1 +
2(14ξ + 3)

√
C0C2

3
√

(8ξ + 1)(4ξ + 1)

)

,

λ2+ = − 3

2
Hf+ − 3

√

C0(8ξ + 1)

2
√

C2(4ξ + 1)

(

C1 +
2(14ξ + 3)

√
C0C2

3
√

(8ξ + 1)(4ξ + 1)

)

.

(39)

Analogically, if a solution tends to φf−, then

λ1− = − 3

2
Hf− +

3
√

C0(8ξ + 1)

2
√

C2(4ξ + 1)

(

C1 −
2(14ξ + 3)

√
C0C2

3
√

(8ξ + 1)(4ξ + 1)

)

,

λ2− = − 3

2
Hf− − 3

√

C0(8ξ + 1)

2
√

C2(4ξ + 1)

(

C1 −
2(14ξ + 3)

√
C0C2

3
√

(8ξ + 1)(4ξ + 1)

)

.

(40)

We obtain that all λi are real.
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We get conditions under that λi are negative. Using that
H = Y (φ) = C0 + C1φ+ C2φ

2 in considering model we obtain

λ1+ = − 4ξ

4ξ + 1
C0 . (41)

We consider the case C0 > 0 and ξ > 0, hence, λ1+ < 0. So, the stability
of the fixed point φf+ depends on sign of

λ2+ = − 3

√

(8ξ + 1)C0
√

(4ξ + 1)C2

C1 −
32ξ + 6

4ξ + 1
C0 . (42)

We see that

λ2+ < 0 ⇔ C1 > − 2(16ξ + 3)
√
C0C2

3
√

(8ξ + 1)(4ξ + 1)
. (43)
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To explore the stability of the stable point φf− , we consider λi± as
functions of the parameter C1 and take notice that λ1−(C1) = λ2+(−C1)
and λ2−(C1) = λ1+(−C1). Consequently, we get

λ1− = 3

√

(8ξ + 1)C0
√

(4ξ + 1)C2

C1 −
32ξ + 6

4ξ + 1
C0 , λ2− = − 4ξ

4ξ + 1
C0 . (44)

λ1− < 0 ⇔ C1 <
2(16ξ + 3)

√
C0C2

3
√

(8ξ + 1)(4ξ + 1)
. (45)

Now we are ready to analyse the stability of the fixed points. Let us start
with φf+ . We consider only the case C0 > 0, C2 > 0 and ξ > 0. We see
that λ1+ < 0 and λ3+ < 0 is a more strong restriction on C1 than
λ2+ < 0. Therefore, the fixed point φf+ is stable at λ2+ < 0. The
analogous reasoning gives that φf− is stable at λ1− < 0.
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Now let us analyse the stability of solutions with nonmonotonic Hubble
parameter. For such a solution that tends to a stable point φf+ condition
(43) should be satisfied. So, we get a such stable solution at

− 2(16ξ + 3)
√
C0C2

3
√

(8ξ + 1)(4ξ + 1)
< C1 < 0, φ(t) = φ+(t),

0 < C1 <
2(16ξ + 3)

√
C0C2

3
√

(8ξ + 1)(4ξ + 1)
, φ(t) = φ−(t).

(46)

For example, we get that at ξ = 1, C2 = 7/2 and C0 = 5/8, solutions are
stable if C1 > −19

√
7/18 ≈ −2.7927. Therefore, solutions, presented in

Fig. 1, are stable.
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Conclusion

We have analysed the stability of kink-type solutions for the induced
gravity models in the FLRW metric. Using the Lyapunov theorem we
have found sufficient conditions of stability. The obtained results allow us
to prove that the exact solutions, with non-monotonic behaviors of the
Hubble parameter, are stable if condition (46) is satisfied.
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Thank you for attention
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