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What are Flux Tubes:

String-like objects, i.e. stretched between the quarks

Crucial for gauge theory dynamics, responsible for 
confinement

For an effective field theorist - D-2 Goldstone bosons of 
ISO(1, D � 1) ! ISO(1, 1)⇥ SO(D � 2)
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What are Flux Tubes:

Effective 2D theory with cutoff 

Action consists of geometrical invariants constructed from 

These Xµ’s are the coordinates of the embedding of the string worldsheet into the target
space. Hence their transformation rules under the full Poincaré group ISO(D � 1, 1) are
simply those of the space-time coordinates. These are analogues of the sigma model U field
in the chiral pion Lagrangian. The Lorentz invariant Lagrangian is then simply a sum of
local geometric invariants constructed with the help of the embedding Xµ,
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where h↵� is the induced metric on the world-sheet,

h↵� = @↵X
µ@�Xµ (5)

Ki
↵� is the second fundamental form (the extrinsic curvature) of the world-sheet. The first

term in (4) is the Nambu–Goto (NG) action, the second one is the rigidity term introduced
by Polyakov [8] and Kleinert [9], and dots stand for higher derivative geometric invariants.2

The tension of the string `�2
s , the rigidity parameter ↵0, and the coe�cients in front of all

other higher-derivative operators are free parameters of the low energy e↵ective theory to be
determined either from experiment (or from the lattice data for the QCD string), or from
matching the e↵ective theory to the microscopic theory in the UV (which can be done, for
example, for cosmic strings in weakly coupled models).

Much of our discussion will deal with infinitely long strings because we are concerned
with the form of the bulk action. IR e↵ects such as finite size e↵ects and boundary terms
can be included at a later stage.

As expected, the action (4) is invariant under the linearly realized ISO(1, 1)⇥SO(D�2)
symmetry, which is the unbroken subgroup of ISO(D�1, 1) in the presence of a long straight
string. The ISO(1, 1) factor acts as a worldsheet Poincaré group, and SO(D� 2) acts as in
(2). The remaining spatial translations act as in (1), and the action of the remaining broken
boosts and rotations J↵i following from the linear transformation law for Xµ is

�↵i✏ Xj = �✏(�ij�↵ +X i@↵Xj) , (6)

where ✏ is an infinitesimal parameter of the boost/rotation.
Often as a starting point for formulating the string dynamics one chooses the manifestly

covariant formalism, where all components of Xµ are considered as independent dynamical
fields. Then the action (4) is invariant under an additional gauge symmetry, world sheet
reparametrizations, and the formulation presented here arises as a result of gauge fixing
defined by (3). The transformation rule (6) in this language arises as a combination of a
conventional linearly realized boost/rotation on the components of Xµ, and a compensating
gauge transformation restoring the gauge condition (3). We deliberately chose a somewhat
less elegant formulation, to stress the analogy with the more familiar case of Goldstones for

2Naively, at this order there are two additional operators, (Ki↵
↵)

2 and R. In two dimensions R is a total
derivative and the three operators are related by the Gauss-Codazzi equation so that in two dimensions only
one of the extrinsic curvature squares has to be kept.

2

No one-loop counterterms on-shell, which makes
low-energy predictions more universal.

Perturbatively:

on-shell
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The spectrum

We can calculate the spectrum of this theory on 

From the bulk point of view it will be the spectrum of closed 
flux tubes with            along some compact direction. 

Naive approach (Aharony and Klinghoffer 2010): reduce to 
QM and do perturbation theory universal up to 

Wrong approach - quantize in Light Cone, don’t care about 
Lorentz anomaly

S1 ⇥R

w = 1

However, the emphasis is usually made on non-critical theories with non-zero string coupling
constant. To the best of our knowledge the exact S-matrix (1) of a “free” critical string has
not been discussed before, and we feel that the viewpoint advocated here may be useful. We
present further speculations and future directions in the concluding section 7.

2. Exact S-Matrix of the Critical Nambu–Goto

For our purposes it will be instructive to consider the worldsheet theory from an e↵ective
field theory point of view. A detailed introduction to this approach can be found in the
accompanying paper [18]. From this point of view the world-sheet theory of an infinitely long
string in a D-dimensional Minkowski space is a theory of Goldstone bosons corresponding
to the coset ISO(D� 1, 1)/ISO(1, 1)⇥ SO(D� 2). Here ISO(D� 1, 1) is the non-linearly
realized target space Poincaré symmetry. Its linearly realized subgroup is a direct product
of the worldsheet Poincaré symmetry ISO(1, 1) and of the SO(D � 2) group of transverse
rotations. This is a consistent e↵ective field theory in any number of dimensions with a
cuto↵ scale set by the string length `s, which physically corresponds to the string width. The
e↵ective action starts with the Nambu–Goto term and in principle has an infinite number of
higher derivative corrections, corresponding to higher order geometric invariants.

Somewhat miraculously, the Nambu–Goto theory is expected, at least in a certain sense,
to be renormalizable in the critical number of dimensions D = 26 [19]. An e↵ective field
theorist would discover this by calculating loops and finding that divergences, which were
expected on the basis of the naive power counting, cancel. We will discuss some aspects of
these expected cancellations in section 4. We will argue that the story is somewhat subtle.
In particular, the cancellations occur only for on-shell quantities. This makes it challenging
to see the cancellations by a direct calculation because at low orders in perturbation theory
on-shell divergences cancel because of symmetry. To see non-trivial cancellations one thus
has to go rather far in the loop expansion.

For now we take a shortcut, and do not check the cancellations by brute force calculation.
Instead, we deduce the properties of the resulting finite on-shell amplitudes from the known
spectrum of the theory at finite volume. This is known for instance from the quantization in
light-cone gauge (which is consistent with the non-linearly realized ISO(D� 1, 1) symmetry
at D = 26). After compactification on a circle (see, e.g., [20]),
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Here R is the length of the string, N and Ñ are levels of an excited string state, so that
2⇡(N � Ñ)/R is the total Kaluza–Klein momentum of the state.

To avoid confusion, let us clarify the meaning of the subscript LC. It indicates that we
use light-cone quantization to define the theory at the quantum level. However, equation (4)
corresponds to target space energies obtained in light-cone quantization and should not be
confused with the spectrum of the light-cone Hamiltonian. Classically, the target space

5

(`s/R)5
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On the lattice: 4D SU(3) YM with one short direction

t

x~x+R

O = P exp {i
I

A} “Creates” a flux tube

Z
DA e�SY MO(0)O†(t) = h|O(0)|nihn|O†(t)|i ⇠ e�E0t

Then  deform the paths to get excited states 
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Need some smarter way to calculate

Let’s see why perturbation theory fails on the example of 
LC theory:

                                       is a large number

In fact

Need to disentangle these two functional dependences

E = `�1
s E(pi`s, `s/R)
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2-step procedure:

1. Calculate the (infinite-volume) S-matrix

11. Obtain spectrum from this S-matrix

Step I. we just do perturbation theory in 

E = `�1
s E(pi`s, `s/R)

p`s
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From S-matrix to the spectrum? 

Should be possible in general, but hard in practice 

Exact procedure - known for integrable 2D theories - 
Thermodynamic Bethe Anzats (Zamolodchikov 1990)

Fortunately, our theory is close to LC integrable theory - their 
tree level lagrangians are the same 

Immediately explains why LC is close to the data

Non-integrability shows up only at one-loop 6pt function 
⇠ (p`s)

6
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What is TBA:

Consider

j

ji

i

�(x1, x2) = �0|Xi(x1)X
j(x2)|p(i)L , p

(j)
R ⇥
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�(x1, x2) = e

�ipLx1
e

ipRx2

x1 < x2

x1 > x2

for large R (ignoring wrapping interactions)

Periodicity of the wave function then implies

pL,RR+ 2�(pL, pR) = 2⇥nL,R

First, Asymptotic Bethe Anzats:
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ABA can be inverted to get S-matrix 
from the spectrum 

Light-Cone quantized NG string:  

e2i�(s) = e�i((�E(N,N))�2(�E(N,0)))R/2

S2!2 = eis`
2
s/4 + Factorizability 
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What is TBA: 
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Dorey, Tateo ’96
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Light-Cone quantized string 

ELC(N, Ñ) = `�1
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TBA for one-loop phase shift:
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How do we include this massive state?

Contributes to scattering of Goldstone’s and changes the 
phase shifts. In particular, it appears as a resonance in the 
antisymmetric channel. We can calculate contributions from

� = arctan

✓
m�(s/m)3

m2 � s

◆

the resonant contribution to the phase shift is
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Worldsheet Axion
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To conclude

Approximate integrability of world sheet theory allows to 
calculate flux tube spectrum beyond perturbation theory 

Analysis of lattice data identified the first massive excitation 
of QCD flux tube

More lattice studies can reveal more particles

Same methods can be applied to open strings and perhaps 
make contact with real experiment 
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Lorentz-invariantly quantized string 

pLR+ 2�(pL, pR)�
⇡

6RcR
pL = 2⇡NL

cL = 1 +
pR
R

� ⇡

6R2cR

Integral equations reduce to algebraic:

ENL,NR = pL + pR � ⇡

6RcL
� ⇡

6RcR

Same for cL pR
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Our prediction for the spectrum

L� = �M2�2 � (@�)2 + ↵�✏ij✏↵�Ki
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