
1

QUARKS–2014

SECULARLY GROWING LOOP CORRECTIONS
IN STRONG ELECTRIC FIELDS

ETA, N.Astrakhantsev and F.K.Popov

(ITEP, MIPT, HSE, Moscow)

ARXIV:1405.5285



2

I. Pair creation by strong electric fields has been ex-

tensively studied by many authors. These studies were

based either on tree–level calculations or were using

Feynman diagrammatic technique. Common wisdom is

that loop corrections should not bring anything sub-

stantially new to the Schwinger’s pair creation picture.

In fact, usually it is believed that loop contributions

cannot bring anything else but the UV renormalization

or corrections to the effective Lagrangian. The goal of

my talk is to show that this is an incorrect intuition

and the tree–level picture or the picture provided by

the Feynman technique is incomplete.

In condensed matter theory it is known that IR loop

corrections can become strong in non–stationary situa-

tions — loop corrections can be comparable to the tree–

level contributions. In this note we observe similar ef-

fects in scalar electrodynamics on strong electric field

backgrounds. These effects, as we will see, substantially

change the picture of the particle production in strong

electric fields.
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II. We study massive scalar coupled to electromag-

netic field in (3 + 1) dimensions:

S =

∫
d4x

[
1

2
|Dµϕ|2 −

1

2
m2|ϕ|2 − 1

4
F 2
µν − jclµA

µ

]

Here Dµ = ∂µ + ieAµ.

We will study two particular types of background

electric fields:

the constant field A1(t) = Et, for which jclµ = 0,

and the pulse A1(t) = ET tanh
(
t
T

)
, which transforms

into Et, as T → ∞.
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III. The harmonic expansion of the scalar field is

ϕ(t, x⃗) =

∫
d3p

(2π)3

[
ap⃗ e

i p⃗ x⃗fp(t) + b+p⃗ e
−i p⃗ x⃗f ∗−p(t)

]
,

where:

[
∂
2
t + ω2

p(t)
]
fp(t) = 0,

ωp(t) =

√
m2 +

[
p⃗ + eA⃗(t)

]2
,

A⃗(t) = (A1(t), 0, 0) .

We will use the WKB approximation:

fp(t) =


A(p⊥)√
2ωp(t)

e
−i

t∫
thc

ωp(t
′)dt′

+ B(p⊥)√
2ωp(t)

e
i

t∫
thc

ωp(t
′)dt′

, t < thc

C(p⊥)√
2ωp(t)

e
−i

t∫
thc

ωp(t
′)dt′

+ D(p⊥)√
2ωp(t)

e
i

t∫
thc

ωp(t
′)dt′

, t > thc.

In the vicinity of the point thc, p1 + eA1(thc) = 0, the

WKB approximation breaks down. Here p⃗⊥ = (p2, p3).
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In the pulse background ωp(t) is time independent

when t ≪ T and t ≫ T . In this case the in– and

out–harmonics become just linear combinations of the

ordinary plane waves.

In the constant field

fp(t) = fp⊥(pph), where pph = p1 + eEt.

Also

f in∗p⊥
(pph) = f outp⊥

(−pph) .

And in the constant electric field background one can

construct a peculiar time-symmetric state:

f s∗p⊥ (pph) = f sp⊥ (−pph) .

The free Hamiltonian cannot be diagonalized once

and forever. However, in the pulse background in–

harmonics diagonalize it at the past infinity, while out–

harmonics do the same at the future infinity. At the

same time, in the constant electric background none of

the choices of the harmonic functions does the diago-

nalization of the free Hamiltonian at the past or future

infinity.
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In the Keldysh-Schwinger diagrammatic technique ev-

ery particle is described by the matrix propagator,

whose entries are the Keldysh propagator

DK =
1

2

⟨{
ϕ(x), ϕ̄(y)

}⟩
,

and the retarded and advanced propagators

DA,R = ∓θ(∓∆t)
⟨[
ϕ(x), ϕ̄(y)

]⟩
(and the same for the gauge fields, with ϕ→ aµ).

After the spatial Fourier transformation the tree-level

propagators look like:

DK
0 (p, t1, t2) =

1

2

[
fp(t1) f

∗
p (t2) + fp(t1) f

∗
p (t2)

]
,

DR,A
0 (p, t1, t2) = ∓θ(∓∆t)

[
fp(t1) f

∗
p (t2)− f ∗p (t1) fp(t2)

]
,

GK
0µν(p, t1, t2) = −gµν

cos [|p|(t1 − t2)]

2|p|
,

GR,A
0µν(p, t1, t2) = ∓igµνθ(∓∆t)

sin [|p|(t1 − t2)]

|p|
.
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The retarded and advanced propagators allow to

specify the spectrum of the quasi–particles, while the

Keldysh propagators specify the state of the theory, i.e.

defines which p⃗-levels are occupied.

E.g., if the quantum average was done with the use of

an arbitrary state |ψ⟩, the form of the Keldysh propa-

gators would have been:

DK(p, t1, t2) =

[⟨
ψ
∣∣∣a+p⃗ ap⃗∣∣∣ψ⟩ +

1

2

]
fp(t1)f

∗
p (t2) + (a→ b, h.c.),

GK
µν(q, t1, t2) =

[⟨
ψ
∣∣∣α+

q⃗µαq⃗ν

∣∣∣ψ⟩− gµν
2

] e−i|q|(t1−t2)
2|q|

+ h.c..



8

IV. The current at the tree–level looks as:

⟨: Jx :⟩ = 2e

∫
d3p

(2π)3
(p1 + eEt)

[
|fp(t)|2 −

1

2ωp(t)

]
.

In the constant electric field background we obtain that

⟨: Jx :⟩ = 0

for the time–symmetric vacuum. The current vanishes

as the consequence of the time translation and time

reversal invariance of the theory in the constant electric

field.

For the pulse background the result is that:

⟨: Jx :⟩ ∝ T e3E2 e−
πm2

eE .

The physical meaning of this answer is easy to under-

stand. If we have a situation with the Schwinger’s

constant pair production per unit four–volume — Γ ∝
(eE)2 e−

πm2

eE — the density of the charge carriers grows

linearly and, hence, the current should also grow during

the whole period, T , when the background field is on.
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V. In the limit

t1 + t2
2

= t→ ∞ and t1 − t2 = const

the leading one–loop correction to the photon’s Keldysh

propagator can be written in the following form:

GK
µν(q, t1, t2) =

[
nµν(q, t)−

gµν
2

] e−i|q|(t1−t2)
2|q|

+ h.c.,

where:

nµν(q, t) = 2 e2
t∫

t0

dt′
∞∫

−∞

dτ
e−2i|q|τ

2|q|

∫
d3k

(2π)3
×

×
[
fk(τ )Dµfk+q(τ ) − Dµfk(τ )fk+q(τ )

]
×

×
[
f ∗k (−τ )Dνf

∗
k+q(−τ ) − Dνf

∗
k (−τ )f ∗k+q(−τ )

]
.

Here Dµ fp(t) ≡ (∂t, ip1 + ieA1(t), ip2, ip3) fp(t) and t0 is a

moment of time, after which the interactions are adia-

batically turned on.

In the pulse background we have the following large

IR contribution: nµν ∼ e2 T A′
µν, as T → ∞, while t0 ≪ −T

and t≫ T .
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Due to the invariance of the harmonic functions

fk⊥(k1 + eEt) under simultaneous compensating shifts of

k1 and t the two-point function has an IR divergence:

nµν ∼ e2(t− t0)Aµν.

The regulator, t0, of the IR divergence in question

cannot be taken to the past infinity. When E → 0

the harmonic functions are converted into plain waves,

fp(t) → eiωp t. Then the factor, Aµν, of the divergence be-

comes proportional to
∫
d3k δ (|q| + ωk + ωk−q). It is zero

and one can take t0 → −∞. At the same time, if E⃗ ̸= 0

the sharp δ–function gets eroded because there is no

conservation of energy in time–dependent background

fields.

The divergence in question has nothing to do with the

vanishing photon’s mass. In fact, let us add to the the-

ory in question the Yukawa coupling to a massive real

(neutral) scalar, λφ|ϕ|2. Then the analogous expression

for np of ⟨{φ, φ}⟩ is even simpler: Under the dτ inte-

gral one just has the product of four harmonic functions

without derivatives. Then np does have the same type

of divergence.
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This divergence is due to photon production. As we

will see now, its coefficient is just a piece of the colli-

sion integral, which is due to the particle creation by

the background field. We have here the simultaneous

creation of one photon, eiqt, and two oppositely charged

scalars, fk and fk+q.

In the limit

t1 + t2
2

= t→ ∞ and t1 − t2 = const

there are no large IR corrections to DK, DR,A and GR,A.

Also there are no large IR corrections to the vertexes.

Even if e2 is very small, after a long enough time pe-

riod loop correction, e2(t − t0), becomes comparable to

the tree–level contribution. I.e. the loop correction,

nµν, is essentially a classical quantity. That is not a very

unusual phenomenon in non–stationary quantum field

theory. These observations put forward the question of

the summation of all unsuppressed loop corrections in

the limit t− t0 → ∞.
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VI. To understand the physics in the strong electric

fields one has to sum up leading IR contributions from

all loops. We would like to perform the summation of

those terms which are powers of e2(t − t0) and to drop

terms, which are suppressed by higher powers of e. In

order to do that, we have to solve the system of Dyson-

Schwinger equations for the exact propagators, DK,R,A

and GK,R,A, and for the vertexes in the IR limit (t− t0 →
∞).

Taking into account that all vertexes, retarded, ad-

vanced propagators and also the Keldysh propagator

for the scalars receive subleading corrections, we can

put them to their tree–level values in the system of

Dyson–Schwinger equations, if we are interested only

in the leading corrections. Then this system reduces to

the single equation for the exact Keldysh propagator of

the gauge field.

Keeping trace of only leading corrections as (t− t0) →
∞, one can convert the integral DS equation into the

integrodifferential form, i.e., into the form of the Boltz-

man’s kinetic equation:
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∂nµν(q, t)

∂t
= −Γρ1µ(q)

[
−gρν + nρν(q, t)

]
+ Γρ2µ(q)nρν(q, t),

where Γ1µν(q) = e2
∫

d3k

(2π)3

∞∫
−∞

dτ
e−2i|q|τ

|q|
×

×
[
fk(τ )Dµfk−q(τ ) − Dµfk(τ )fk−q(τ )

]
×

×
[
f ∗k (−τ )Dνf

∗
k−q(−τ ) − Dνf

∗
k (−τ )f ∗k−q(−τ )

]
and Γ2µρ(q) = e2

∫
d3k

(2π)3

∞∫
−∞

dτ
e−2i|q|τ

|q|
×

×
[
f ∗k (τ )Dµf

∗
k−q(τ ) − Dµf

∗
k (τ )f

∗
k−q(τ )

]
×

×
[
fk(−τ )Dρfk−q(−τ ) − Dρfk(−τ )fk−q(−τ )

]
.

One can check that nµν and Γ1,2µν(q) are transversal

nµν q
ν = Γ1,2µν(q)q

ν = 0.

The physical meaning of the RHS of this equation

is very simple. The first term describes the photon

production by the background field. The second term

describes the decay of the produced photons into

charged pairs.

The situation is similar to the one in de Sitter space

(arXiv:1309.2557).


