Higgs inflation and large gravity waves – status and predictivity

Fedor Bezrukov

CERN & University of Connecticut & RIKEN-BNL Research Center, USA

Outline

- Piggs inflation tree level (generic case)
- Higgs inflation Quantum corrections and special case

Standard Model – describes nearly everything

Describes

- all laboratory experiments electromagnetism, nuclear processes, etc.
- all processes in the evolution of the Universe after the Big Bang Nucleosynthesis (T < 1 MeV, t > 1 sec)

Experimental problems:

- Laboratory
 - ? Neutrino oscillations
- Cosmology

? Dark Matter

Data - BG - Geo 🕏

50 60 70 L₀/E₂ (km/MeV)

? Dark Energy

Minimal extensions of the SM to account for everything

Should explain everything	
 Neutrino oscillations)
 Dark Matter 	VMSM
 Baryon asymmetry of the Universe 	J
Inflation	this talk – with Higgs next talk – light inflaton

in a minimal way

- Introduce minimal amount of new particle/parameters
 - Simple
 - Predictive
- No new scales up to gravity/inflation
 - With scale invariance alleviates hierarchy problem
 - Allows to make relations between inflation and particle physics

Inflation evidence - horizon problem

Perturbations at inflation are observable in CMB Temperature fluctuations (PLANCK)

B-mode Polarization (BICEP2)

B-mode polarization spectrum

Inflationary parameters from CMB

$$J_{
m inflation}^{1/4} \sim 1.9 imes 10^{16} \; {
m GeV} \left(rac{r}{0.1}
ight)^{1/4}$$

Inflationary parameters from CMB

Fedor Bezrukov (CERN&UCONN&RBRC)

Higgs inflation and large .

QUARKS-2014 7 / 19

Chaotic inflation-a scalar field

Non-minimal coupling to gravity solves the problem

Quite an old idea

For a scalar field coupling to the Ricci curvature is possible (actually *required* by renormalization)

- A.Zee'78, L.Smolin'79, B.Spokoiny'84
- D.Salopek J.Bond J.Bardeen'89

Scalar part of the (Jordan frame) action

$$S_{J} = \int d^{4}x \sqrt{-g} \left\{ -\frac{M_{P}^{2}}{2}R - \xi \frac{h^{2}}{2}R + g_{\mu\nu} \frac{\partial^{\mu}h\partial^{\nu}h}{2} - \frac{\lambda}{4}(h^{2} - v^{2})^{2} \right\}$$

- *h* is the Higgs field; $M_P \equiv \frac{1}{\sqrt{8\pi G_N}} = 2.4 \times 10^{18} \text{GeV}$
- SM higgs vev $v \ll M_P/\sqrt{\xi}$ can be neglected in the early Universe
- At h ≫ M_P / √ξ all masses are proportional to h scale invariant spectrum!

[FB, Shaposhnikov'08]

Conformal transformation - nice way to calculate

It is possible to get rid of the non-minimal coupling by the conformal transformation (change of variables)

$$\hat{g}_{\mu
u}=\Omega^2 g_{\mu
u}\,,\qquad \Omega^2\equiv 1+rac{\xi\,h^2}{M_P^2}$$

Redefinition of the Higgs field to get canonical kinetic term

$$\frac{d\chi}{dh} = \sqrt{\frac{\Omega^2 + 6\xi^2 h^2 / M_P^2}{\Omega^4}} \implies \begin{cases} h \simeq \chi & \text{for } h < M_P / \xi \\ \Omega^2 \simeq \exp\left(\frac{2\chi}{\sqrt{6}M_P}\right) & \text{for } h > M_P / \xi \end{cases}$$

Resulting action (Einstein frame action)

$$S_{E} = \int d^{4}x \sqrt{-\hat{g}} \left\{ -\frac{M_{P}^{2}}{2}\hat{R} + \frac{\partial_{\mu}\chi\partial^{\mu}\chi}{2} - \frac{\lambda}{4}\frac{h(\chi)^{4}}{\Omega(\chi)^{4}} \right\}$$

Potential - different stages of the Universe

CMB parameters are predicted

Fedor Bezrukov (CERN&UCONN&RBRC)

Higgs inflation and large

RG improved potential for Higgs inflation

$$U_{\text{RG improved}}(\chi) = \frac{\lambda(\mu)}{4} \frac{M_{P}^{4}}{\xi^{2}} \left(1 - e^{-\frac{2\chi}{\sqrt{6}M_{P}}}\right)^{2}$$

with

$$\mu^{2} = \alpha^{2} m_{t}^{2}(\chi) = \alpha^{2} \frac{y_{t}^{2}(\mu)}{2} \frac{M_{P}^{2}}{\xi} \left(1 - e^{-\frac{2\chi}{\sqrt{6}M_{P}}}\right)$$

- Large λ slow (logarithmic) running, no noticeable change compared to tree level potential
- Small λ may give interesting "features" in the potential
- Strictly speaking ξ is also running not relevant for the current discussion for a set of reasons, especially in the region of small λ

[FB, Magnin, Shaposhnikov'09]

RG running indicates small λ at Planck scale

Renormalization evolution of the Higgs self coupling λ

$$\lambda \simeq \lambda_{0} + b \ln^{2} \frac{\mu}{q}$$

$$b \simeq 0.000023$$

$$\lambda_{0} - small$$

$$q \text{ of the order } M_{p}$$
depend on $M_{h}^{*}, m_{t}^{*} \lambda_{0}$

$$\begin{array}{c} & & & \\ & & & \\ Higgs mass M_{h} = 125.3 \pm 0.6 \text{ GeV} \\ & & &$$

RG running indicates small λ at Planck scale

Potentials in different regimes

$$\lambda \simeq \lambda_0 + b \ln^2 \frac{\mu}{q}$$

$$D \simeq 0.000023$$

$$\lambda_0 - \text{small}$$

$$q \text{ of the order } M_p$$

$$depend \text{ on } M_h^*, \ m_t^* \ \lambda_0$$

$$q \quad \mu$$

$$U(\chi) \simeq \frac{\lambda(\mu)M_P^4}{4\xi^2} \left(1 - e^{-\frac{2\chi}{\sqrt{6}M_P}}\right)^2 \qquad \begin{array}{c} 5.\times 10^{-8} \\ 4.\times 10^{-8} \\ 3.\times 10^{-8} \\ 2.\times 10^{-8} \\ 1.\times 10^{-8} \\ 0 \end{array}$$

$$\mu^2 = \alpha^2 \frac{y_t(\mu)^2}{2} \frac{M_P^2}{\xi} \left(1 - e^{-\frac{2\chi}{\sqrt{6}M_P}}\right) \qquad \begin{array}{c} 1.\times 10^{-8} \\ 0 \\ 0 \\ 1 \\ 2 \\ 3. \\ 4 \\ 5 \end{array}$$
Many coincidences $(q \sim M_P, \ U(q) \sim U_{\text{infl}})$

Interesting inflation near to the critical point

Connection with the low energy physics

Inflationary "masses" m_t^* , M_h^* differ from physical m_t , M_h Let us analyse counterterms generated by

$$\mathscr{L}_t = \frac{y_t}{\sqrt{2}} \bar{\psi}_t \psi_t F(\chi), \quad F(\chi) = \frac{h(\chi)}{\Omega(h(\chi))}$$

Low energy F'(0) = 1, at inflation $F'(\infty) = 0$

δγ

$$y_t \rightarrow y_t + rac{y_t^3}{16\pi^2} \left(rac{9}{4\epsilon} + C_t\right) F'^2$$

$$\lambda
ightarrow \lambda - rac{y_t^4}{16\pi^2} \left(rac{3}{arepsilon} - C_\lambda
ight) F'^4$$

$$M_h^* = M_h \left(1 - \frac{y_t^4 C_\lambda}{16\pi^2} \frac{v^2}{M_h^2} \right)$$

Inflation-particle mass difference $m^* - m$ of several GeV for $C \sim 1$

[FB, Magnin, Shaposhnikov, Sibiryakov'11, FB, Shaposhnikov'14]

Fedor Bezrukov (CERN&UCONN&RBRC)

δχ

Higgs inflation and large r

Cosmological parameters for critical point HI M_{h}^{*} , GeV

Cosmological parameters for critical point HI M_{h}^*, GeV

QUARKS-2014 17 / 19

Electroweak vacuum should be stable

 2σ compatible with the observations

[FB, Kalmykov, Kniehl, Shaposhnikov'12, Buttazzo, Degrassi, Giardino, Giudice, Sala, *et al.*'13], Pikelner'QUARKS 14

Conclusions

Higgs inflation as the minimal inflationary model:

- Large ξ regime
 - Cosmology: $n_s \simeq 0.97$, $r \simeq 0.0033$
 - Particle physics: rather generic
- Small ξ regime
 - Cosmology:
 - ★ any *n_s, r*
 - * predicts positive $dn_s/d\ln k,\ldots$
 - Particle physics:
 - Higgs and top masses correspond to absolute vacuum stability
 - * High (inflationary) and low (particle physics) scale coupling constants are rather close when matched over the $h \sim M_P / \xi$ region

Is any of this true?

- Measure MS top quark Yukawa lepton collider, better theoretical analysis on hardon collider
- Measure CMB properties (especially r)

Foreground guesses for BICEP2 signal BICEP2 foreground models

Raphael Flauger's estimates of foregrounds

Fedor Bezrukov (CERN&UCONN&RBRC)

Consistency

Up to now we assumed that the model is a full model, and anything beyond it does not spoil the story.

Is this really the case?

Cut off scale today

Let us work in the Einstein frame for simplicity

Change of variables: $\frac{d\chi}{dh} = \frac{M_P \sqrt{M_P^2 + (\xi + 6\xi^2)h^2}}{M_P^2 + \xi h^2}$ leads to the higher order terms in the potential (expanded in a power law series) $V(\chi) = \lambda \frac{h^4}{4\Omega^4} \simeq \lambda \frac{h^4}{4} \simeq \lambda \frac{\chi^4}{4} + \# \frac{\chi^6}{(M_P/\xi)^2} + \cdots$

Unitarity is violated at tree level

in scattering processes (eg. 2 \to 4) with energy above the "cut-off" $E > \Lambda_0 \sim \frac{M_P}{\xi}$

Hubble scale at inflation is $H \sim \lambda^{1/2} \frac{M_P}{\xi}$ – not much smaller than the today cut-off Λ_0 :(

[Burgess, Lee, Trott'09, Barbon, Espinosa'09, Hertzberg'10]

Higgs inflation and large r

"Cut off" is background dependent!

Classical background Quantum perturbations $\chi(x,t) \stackrel{\smile}{=} \bar{\chi}(t) + \delta \chi(x,t)$

leads to background dependent suppression of operators of dim n > 4 $\frac{\mathscr{O}_{(n)}(\delta \chi)}{[\Lambda_{(n)}(\bar{\chi})]^{n-4}}$

Example

Potential in the inflationary region $\chi > M_P$: $U(\chi) = \frac{\lambda M_P^4}{4\xi^2} \left(1 - e^{-\frac{2\chi}{\sqrt{6}M_P}}\right)^2$ leads to operators of the form: $\frac{\mathscr{O}_{(n)}(\delta\chi)}{[\Lambda_{(n)}(\bar{\chi})]^{n-4}} = \frac{\lambda M_P^4}{\xi^2} e^{-\frac{2\bar{\chi}}{\sqrt{6}M_P}} \frac{(\delta\chi)^n}{M_P^n}$ Leading at high *n* to the "cut-off" $\Lambda \sim M_P$

Cut-off grows with the field background Jordan frame Einstein frame

 M_{p} $M_{p}/\sqrt{\xi}$ M_{p}/ξ M_{p}/ξ

Relation between cut-offs in different frames:

$$\Lambda_{Jordan}=\Lambda_{Einstein}\Omega$$

Relevant scales Hubble scale $H \sim \lambda^{1/2} \frac{M_P}{\xi}$ Energy density at inflation $V^{1/4} \sim \lambda^{1/4} \frac{M_P}{\sqrt{\xi}}$

Reheating temperature $M_P/\xi < T_{\text{reheating}} < M_P/\sqrt{\xi}$

[FB, Gorbunov, Shaposhnikov'11, FB, Magnin, Shaposhnikov, Sibiryakov'11]

Fedor Bezrukov (CERN&UCONN&RBRC)

Higgs inflation and large r

RG improved effective potential

$$U(\phi) = \frac{\lambda(\mu)}{4}\phi^4 + \sum_i \frac{m_i^4(\phi)}{64\pi^2} \left(\ln \frac{m_i^2(\phi)}{\mu^2} + \operatorname{const}_i \right) + \cdots$$

with $m_i(\phi) = g\phi, \frac{y}{\sqrt{2}}\phi$, so that $m_i^4 \propto \phi^4$

• *U* should be independent on non-physical parameter μ – leads to RG equation for λ

$$\frac{\partial \lambda}{\partial \ln \mu} = \beta_{\lambda}$$

At the same time, one can choose μ ≃ m(φ) ≃ y_tφ to minimize the logarithms

$$egin{aligned} U_{ ext{RG improved}} &\simeq rac{\lambda(oldsymbol{\mu}(\phi))}{4} \phi^4 \ & \mu^2 &\simeq lpha^2 rac{y_t}{2} \phi^2 \end{aligned}$$

 $\boldsymbol{\alpha}$ is of order one

Shift symmetric UV completion allows to have a form of effective theory during inflation

$$\mathscr{L} = \frac{(\partial_{\mu}\chi)^{2}}{2} - U_{0}\left(1 + \sum u_{n}e^{-n\cdot\chi/M}\right)$$
$$= \frac{(\partial_{\mu}\chi)^{2}}{2} - U_{0}\left(1 + \sum \frac{1}{k!}\left[\frac{\delta\chi}{M}\right]^{k}\sum n^{k}u_{n}e^{-n\cdot\bar{\chi}/M}\right)$$

Effective action (from quantum corrections of loops of $\delta \chi$) $\mathscr{L}_{\text{eff}} = f^{(1)}(\chi) \frac{(\partial_{\mu} \chi)^2}{2} - U(\chi) + f^{(2)}(\chi) \frac{(\partial^2 \chi)^2}{M^2} + f^{(3)}(\chi) \frac{(\partial \chi)^4}{M^4} + \cdots$

All the divergences are absorbed in u_n and in $f^{(n)} \sim \sum f_l e^{-n\chi/M}$

UV completion requirement

Shift symmetry (or scale symmetry in the Jordan frame) is respected $\chi\mapsto\chi+{\rm const}$

Connection of inflationary and low energy physics requires more assumptions on the UV theory

$$\lambda U(\bar{\chi} + \delta \chi) = \lambda \left(U(\bar{\chi}) + \frac{1}{2} U''(\bar{\chi}) (\delta \chi)^2 + \frac{1}{3!} U'''(\bar{\chi}) (\delta \chi)^3 + \cdots \right)$$

in one loop: $\lambda U''(\bar{\chi})\bar{\Lambda}^2$, $\lambda^2 (U''(\bar{\chi}))^2 \log \bar{\Lambda}$, in two loops: $\lambda U^{(IV)}(\bar{\chi})\bar{\Lambda}^4$, $\lambda^2 (U''')^2 \bar{\Lambda}^2$, $\lambda^3 U^{(IV)} (U'')^2 (\log \bar{\Lambda})^2$,

If no power law divergences are generated

then the loop corrections are arranged in a series in λ $U(\chi) = \lambda U_1(\chi) + \lambda^2 U_2(\chi) + \lambda^3 U_3(\chi) + \cdots$

A rule to fix the finite parts of the counterterm functions $U_i(\chi)$

Example – dimensional regularisation + MS

Fedor Bezrukov (CERN&UCONN&RBRC)

Higgs inflation and large r

Summary on radiative corrections

- The tree level calculations can be ok, as far as the cut-off is background dependent
- Underlying theory respects shift (scale) invariance effective (order by order) analysis of the inflationary potential is possible
- Underlying theory respects scale invariance and does not generates any quadratic contributions – calculations are fully possible provided the action *and* the subtraction rules are specified.

Higgs decouples from all fields during inflation

Action for the gauge fields and fermions is invariant under conformal transformations $(A_{\mu} \mapsto A_{\mu}, \psi \mapsto \Omega^{3/2}\psi)$ except for the mass terms $\mathscr{L}_{A}^{J} = g^{2}h^{2}A_{\mu}A_{\mu} \quad \mapsto \quad \mathscr{L}_{A}^{E} = g^{2}\frac{h^{2}}{\Omega^{2}}A_{\mu}A_{\mu} = g^{2}\frac{M_{P}^{2}}{\xi}\left(1 - e^{-\frac{2\chi}{\sqrt{6}M_{P}}}\right)A_{\mu}A_{\mu}$ $\mathscr{L}_{Y}^{J} = yh\bar{\psi}\psi \quad \mapsto \quad \mathscr{L}_{Y}^{E} = y\frac{h}{\Omega}\bar{\psi}\psi = y\frac{M_{P}}{\sqrt{\xi}}\left(1 - e^{-\frac{2\chi}{\sqrt{6}M_{P}}}\right)^{1/2}\bar{\psi}\psi$

> In inflationary region $h > M_P / \sqrt{\xi}$: $\Omega^2 \equiv 1 + \frac{\xi h^2}{M_P^2} \simeq \exp\left(\frac{2\chi}{\sqrt{6}M_P}\right)$

Exponentially weak coupling of χ to other matter

Non-minimal coupling made the Higgs potential flat and at the same time took care of the corrections from the other fields

Contributions form Scalar and Tensor modes

F. L. Bezrukov and M. Shaposhnikov *Phys. Lett.* B659 (2008) 703–706, arXiv:0710.3755.

- F. L. Bezrukov, A. Magnin and M. Shaposhnikov *Phys. Lett.* B675 (2009) 88–92, arXiv:0812.4950.
- Y. Hamada, H. Kawai, K.-y. Oda, and S. C. Park arXiv:1403.5043.

F. Bezrukov and M. Shaposhnikov arXiv:1403.6078.

F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl, and M. Shaposhnikov JHEP 1210 (2012) 140, arXiv:1205.2893.

- D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, *et al.* arXiv:1307.3536.
- C. P. Burgess, H. M. Lee and M. Trott JHEP 09 (2009) 103, arXiv:0902.4465.

J. L. F. Barbon and J. R. Espinosa *Phys. Rev.* **D79** (2009) 081302, arXiv:0903.0355.

F. Bezrukov, D. Gorbunov and M. Shaposhnikov *JCAP* **1110** (2011) 001, arXiv:1106.5019