Spectral duality and gauge theories

Y. Zenkevich ${ }^{a, b}$
in collaboration with
A. Mironov, A. Morozov, B. Runov, A. Zotov
arXiv:1204.0913, 1206.6349, 1307.1502
Institute for Theoretical and Experimental Physics, Moscow, Institute of Nuclear Research of RAS, Moscow

$$
\text { June 5, } 2014
$$

The plan

- Philosophy: branes, gauge theories and CFT
- Technicalities: XXZ/XXZ spectral duality
- Possible generalization: quantum $p-q$ duality

Branes, gauge theories and CFT

 conformal block

$\Gamma: \operatorname{Pol}_{N, 2}(x, z)=0$
Seiberg-Witten curve

5d brane diagram

bare spectral curve

$\quad \operatorname{SU}(N)^{2}$
brane diagram
$\operatorname{SU}(N)^{2}$
brane diagram

$S U(N)^{2}$ quiver gauge theory

The pentagon of dualities

The double pentagon of dualities

The double pentagon of dualities

The integrable part of the story

$$
\begin{aligned}
& N \text {-site } U_{q}\left(\mathfrak{g l}_{K}\right) X X Z \xrightarrow{\text { spectral duality }} K \text {-site } U_{q}\left(\mathfrak{g l}_{N}\right) X X Z \\
& \begin{array}{c}
q=e^{\gamma} \rightarrow 1 \\
v=q^{2 \times} \rightarrow 1+2 \gamma x \\
q^{2 v \partial_{v}} \rightarrow e^{\partial_{X}}
\end{array} \\
& \downarrow \begin{array}{c}
q \rightarrow 1 \\
q^{2 v \partial_{v}} \rightarrow e^{\partial_{x}}, \text { finite! } \\
v=q^{2 x} \rightarrow 1+2 \gamma x
\end{array} \\
& N \text {-site } \mathfrak{g l}_{K} X X X \quad \xrightarrow{\text { spectral duality }} K \text {-site } \mathfrak{g l}_{N} \text { trig Gaudin }
\end{aligned}
$$

N-site $\mathfrak{g l}_{K}$ rat Gaudin $\xrightarrow{\text { spectral duality }} K$-site $\mathfrak{g l}_{N}$ rat Gaudin

The integrable part of the story

N-site $U_{q}\left(\mathfrak{g l}_{K}\right) X X Z \xrightarrow{\text { spectral duality }} K$-site $U_{q}\left(\mathfrak{g l}_{N}\right) X X Z$

$$
\begin{gathered}
q=e^{\gamma} \rightarrow 1 \\
v=q^{2+} \rightarrow 1+2 \gamma x \\
q^{2 v \partial_{v} \rightarrow e^{\partial_{x}}}
\end{gathered}|\quad| \begin{gathered}
q \rightarrow 1 \\
q^{2 v \partial_{v}} \rightarrow e^{\partial_{x}}, \text { finite! } \\
v=q^{2 x} \rightarrow 1+2 \gamma x
\end{gathered}
$$

N-site $\mathfrak{g l}_{K} X X X \quad \xrightarrow{\text { spectral duality }} K$-site $\mathfrak{g l}_{N}$ trig Gaudin
N-site $\mathfrak{g l}_{K}$ rat Gaudin $\xrightarrow{\text { spectral duality }} K$-site $\mathfrak{g l}_{N}$ rat Gaudin
[Mukhin, Tarasov, Varchaneko, math/0610799]
[Mukhin, Tarasov, Varchaneko, math/0112005, math/0605172]

The plan

- Philosophy: branes, gauge theories and CFT
- Technicalities: XXZ/XXZ spectral duality
- Possible generalization: quantum $p-q$ duality

The $U_{q}\left(\mathfrak{g l}_{K}\right) X X Z$ spin chain

The chain is built out of Lax operators located at the sites:

$$
\mathbf{T}(v)=Q \mathbf{L}^{N}(v) \cdots \mathbf{L}^{1}(v) . \quad \text { Twist } Q=\operatorname{diag}\left(Q_{1}, \ldots, Q_{K}\right)
$$

$U_{q}\left(\mathfrak{g l}_{K}\right)$ indices are blue, site indices are green.
Lax operators satisfy the " $R L L$ " relations

$$
R_{\text {trig }}^{(12)}(u / v) \mathbf{L}(u) \otimes \mathbf{L}(v)=(\mathbf{1} \otimes \mathbf{L}(v))(\mathbf{L}(u) \otimes \mathbf{1}) R_{\text {trig }}^{(12)}(u / v)
$$

More explicitly

$$
\begin{aligned}
& \mathbf{L}^{i}(v)=\sum_{a, b} \mathbf{L}_{a b}^{i} \otimes E_{a b}= \\
& \quad=\sum_{a, b}\left(\delta_{a b} q^{\mathbf{H}_{a}^{i}}+\left(q-q^{-1}\right) \frac{\delta_{a>b} v+\delta_{b \geq a} v_{i}}{v-v_{i}} \mathbf{S}_{b a}\right) \otimes E_{a b}
\end{aligned}
$$

The operators $\mathbf{S}_{a b}$ and $q^{\mathbf{H}_{a}^{i}}$ satisfy the $U_{q}\left(\mathfrak{g l}_{K}\right)$ algebra.

Quantum commuting operators in $U_{q}\left(\mathfrak{g l}_{K}\right) X X Z$ spin chain

Commuting subalgebra

$$
\left[\mathcal{H}_{i}, \mathcal{H}_{j}\right]=0
$$

For $K=2$ [Sklyanin, Reshetikhin, etc.]

$$
\begin{gathered}
\mathcal{H}_{1}(v)=\operatorname{tr} \mathbf{T}(v), \\
{\left[\mathcal{H}_{1}(v), \mathcal{H}_{1}(u)\right]=0 .}
\end{gathered}
$$

One more combination (quantum determinant) gives the Casimir operator

$$
\begin{gathered}
\mathcal{H}_{2}(v)=q \operatorname{det} \mathbf{T}(v)=\mathbf{T}_{11}(v) \mathbf{T}_{22}\left(q^{2} v\right)-q^{-1} \mathbf{T}_{21}(v) \mathbf{T}_{12}\left(q^{2} v\right), \\
{\left[\mathcal{H}_{2}(v), \text { anything }\right]=0}
\end{gathered}
$$

For $K>2$ this is not sufficient, more operators needed.

Quantum commuting operators in $U_{q}\left(\mathfrak{g}_{K}\right) \mathrm{XXZ}$ spin chain

For $K>2$: Universal difference operator

$$
\hat{D}(v)=\sum_{m=0}^{K}(-1)^{m} \mathcal{H}_{m}(v) q^{2 v \partial_{v}}=\sum_{m=0}^{K} \sum_{A=\left\{a_{1}<\ldots<a_{m}\right\}} \operatorname{det}_{\operatorname{col}} q\left(\mathbf{T}_{A A}(v) q^{2 v \partial_{v}}\right),
$$

where $\mathbf{T}_{A A}$ is $m \times m$ submatrix of \mathbf{T} and the column q-determinant is

$$
\operatorname{det}_{\mathrm{col}}{ }_{q} \mathbf{M}_{A A}=\sum_{\sigma \in \mathfrak{S}_{m}}(-q)^{\operatorname{inv}(\sigma)} \mathbf{M}_{\mathrm{a}_{\sigma(1)} \mathrm{a}_{1}} \cdots \mathbf{M}_{\mathrm{a}_{\sigma(m)} \mathrm{a}_{m}}
$$

and $\operatorname{inv}(\sigma)=\{$ number of pairs (a, b) such that $\sigma(b)>\sigma(a)\}$.

$$
\left[\mathcal{H}_{m}(v), \mathcal{H}_{n}(u)\right]=0
$$

[Mukhin, Tarasov, Varchenko, math/0605015] [Chervov, Falqui, Rubtsov, Silantyev, 1210.3529]

Building spins in (anti)symmetric reps from q-Bose (q-Fermi)

Prototypical example: $\mathfrak{s l}_{2}$

- Bose (Fermi) generators $\left[\mathbf{a}_{a}, \mathbf{a}_{b}\right]_{ \pm}=\left[\mathbf{a}_{a}^{\dagger}, \mathbf{a}_{b}^{\dagger}\right]_{ \pm}=0,\left[\mathbf{a}_{a}, \mathbf{a}_{b}^{\dagger}\right]_{ \pm}=1$,
- $\mathbf{s}_{a b}=\mathbf{a}_{a}^{\dagger} \mathbf{a}_{b}-\frac{1}{2} \delta_{a b} \mathbf{a}_{c}^{\dagger} \mathbf{a}_{c} \Rightarrow\left[\mathbf{s}_{a b}, \mathbf{s}_{c d}\right]=\delta_{b c} \mathbf{s}_{a d}-\delta_{a d} \mathbf{s}_{c b}$
- Vacuum is trivial rep $|0\rangle$.
- Symmetric reps are $\mathbf{a}_{a}^{\dagger} \cdots \mathbf{a}_{b}^{\dagger}|0\rangle$
- Quadratic Casimir is $\frac{1}{2} \mathbf{s}_{a b} \mathbf{s}_{b a}=\frac{\mathbf{N}}{2}\left(\frac{\mathbf{N}}{2}+1\right)$, where $\mathbf{N}=\mathbf{a}_{a}^{\dagger} \mathbf{a}_{a}$.

q-deformation

- q-Bose (q-Fermi) creation and annihilation operators \mathbf{A}_{a}^{i} and \mathbf{B}_{a}^{i} act on $|0\rangle$:

$$
\begin{array}{cl}
\mathbf{A}_{a}^{i} \mathbf{A}_{b}^{j}=q^{\delta_{i j} \operatorname{sgn}(a-b)} \mathbf{A}_{b}^{j} \mathbf{A}_{a}^{i}, & \mathbf{B}_{a}^{i} \mathbf{B}_{b}^{j}=q^{\delta_{i j} \operatorname{sg}(a-b)} \mathbf{B}_{b}^{j} \mathbf{B}_{a}^{i}, \\
\mathbf{A}_{a}^{i} \mathbf{B}_{b}^{j}=q^{\delta_{i j}\left(\delta_{a b}-\operatorname{sgn}(a-b)\right)} \mathbf{B}_{b}^{j} \mathbf{A}_{a}^{i}-\delta_{a b} \delta_{i j} \boldsymbol{H}^{\mathbf{H}_{a}^{i}+1} \\
{\left[\mathbf{H}_{a}^{i}, \mathbf{A}_{b}^{j}\right]=\delta_{a b} \delta_{i j} \mathbf{A}_{b}^{j},} & {\left[\mathbf{H}_{a}^{i}, \mathbf{B}_{b}^{j}\right]=-\delta_{a b} \delta_{i j} \mathbf{B}_{b}^{j}}
\end{array}
$$

- $\mathbf{A}_{a}^{i} \mathbf{B}_{a}^{i}=\left[\mathbf{H}_{a}^{i}\right]_{q}$ count the number of different creation operators, they are Cartan elements of $U_{q}\left(\mathfrak{g l}_{K}\right)^{\otimes N} . c_{i}=\sum_{a=1}^{K} \mathbf{A}_{a}^{i} \mathbf{B}_{a}^{i}$ are Casimirs.
- The Lax operator is built from A's and B's:

$$
\mathbf{S}_{a b}^{i}=\mathbf{A}_{a}^{i} \mathbf{B}_{b}^{i}, \quad \mathbf{L}_{a b}^{i}(v)=\delta_{a b} \frac{q^{\mathbf{H}_{a}^{i}}}{q-q^{-1}}+\delta_{b>a} \mathbf{A}_{b}^{i} \mathbf{B}_{a}^{i}+\frac{v_{i} \mathbf{A}_{b}^{i} \mathbf{B}_{a}^{i}}{v-v_{i}}
$$

The spectral duality

Consider the N-site $U_{q}\left(\mathfrak{g l}_{K}\right)$ and K-site $U_{q}\left(\mathfrak{g l}_{N}\right)$ XXZ spin chains. Denote their universal difference operators by $\hat{D}_{N, K}$ and $\hat{D}_{K, N}$

Main conjecture

$$
\prod_{i=1}^{N}\left(v-v_{i}\right) \hat{D}_{N, K}(v)=\prod_{a=1}^{K}\left(1-w_{a} q^{2 v \partial_{v}}\right) \hat{D}_{K, N}\left(q^{-2 v \partial_{v}}\right)
$$

where v_{i} are the inhomogeneities in \mathbf{L}^{i} and $w_{a}=Q_{a} \prod_{i=1}^{N} q^{\mathbf{H}_{a}^{i}}$.

Duality acts as the Fourier transform!

The spectral duality

Main conjecture

$$
\prod_{i=1}^{N}\left(v-v_{i}\right) \hat{D}_{N, K}(v)=\prod_{a=1}^{K}\left(1-w_{a} q^{2 v \partial_{v}}\right) \hat{D}_{K, N}\left(q^{-2 v \partial_{v}}\right),
$$

What evidence do we have?

- Isomorphism of q-Bose algebras.
- The classical limit.
- Degeneration $q \rightarrow 1, \mathrm{XXX} /$ trigonometric Gaudin duality.

The spectral duality

Main conjecture

$$
\prod_{i=1}^{N}\left(v-v_{i}\right) \hat{D}_{N, K}(v)=\prod_{a=1}^{K}\left(1-w_{a} q^{2 v \partial_{v}}\right) \hat{D}_{K, N}\left(q^{-2 v \partial_{v}}\right)
$$

What evidence do we have?

- Isomorphism of q-Bose algebras.
- The classical limit.
- Degeneration $q \rightarrow 1$.

XXX limit

q-Bose turns into Bose:

$$
\widetilde{\mathbf{A}}_{a}^{i}, \widetilde{\mathbf{B}}_{b}^{j} \xrightarrow{q \rightarrow 1} \mathbf{a}_{a}^{i}, \mathbf{b}_{b}^{j},
$$

$$
\begin{gathered}
{\left[\mathbf{a}_{a}^{i}, \mathbf{a}_{b}^{j}\right]=\left[\mathbf{b}_{a}^{i}, \mathbf{b}_{b}^{j}\right]=0, \quad\left[\mathbf{a}_{a}^{i}, \mathbf{a}_{b}^{j}\right]=-\delta_{i j} \delta_{a b} .} \\
\hat{D}_{N, K}(v) \xrightarrow{q \rightarrow 1} \underset{\mathrm{col}}{\operatorname{det}}\left(\mathbf{1}-\mathbf{T}(x) e^{\partial_{x}}\right),
\end{gathered}
$$

where still $\mathbf{T}(x)=Q \mathbf{L}^{N}(v) \cdots \mathbf{L}^{1}(v)$, but $\mathbf{L}_{a b}^{i}(x)=\delta_{a b}+\frac{1}{x-x_{i}} \mathbf{b}_{a}^{i} \mathbf{a}_{b}^{i}$ and

$$
\underset{\mathrm{col}}{\operatorname{det}} \mathbf{M}=\sum_{\sigma \in \mathfrak{G}_{K}}(-1)^{\operatorname{inv}(\sigma)} \mathbf{M}_{\sigma(1), 1} \cdots \mathbf{M}_{\sigma(K), K}
$$

Normal ordering. : $F\left(\mathbf{b}, \mathbf{a}, x, \partial_{x}\right):=\left\{\begin{array}{l}\text { all } \mathbf{b} \text { 's, } x \text { 's to the left, } \\ \text { all a's, } \partial_{x} \text { 's to the right }\end{array}\right\}$
Normal ordering theorem I.

$$
\operatorname{det}_{\operatorname{col}}\left(\mathbf{1}-\mathbf{T}(x) e^{\partial_{x}}\right)=\underset{\operatorname{col}}{\operatorname{det}}\left(\mathbf{1}-\mathbf{T}(x) e^{\partial_{x}}\right):
$$

Normal ordering in XXX. Examples

Examples.

- $K=1$: trivial,

$$
\left[1-Q_{1}\left(1+\frac{1}{x-x_{1}} \mathbf{b}_{1}^{1} \mathbf{a}_{1}^{1}\right) \cdots\left(1+\frac{1}{x-x_{N}} \mathbf{b}_{1}^{N} \mathbf{a}_{1}^{N}\right)\right] e^{\partial_{x}}=: \text { same : }
$$

- $K=2, N=1$:

$$
\begin{aligned}
& \operatorname{det}_{\mathrm{col}}^{2 \times 2}\left[\mathbf{1}-Q\left(\mathbf{1}+\frac{1}{x-x_{1}} \mathbf{b}^{1}\left(\mathbf{a}^{1}\right)^{\top}\right) e^{\partial_{x}}\right]= \\
& =\left(1-Q_{1} e^{\partial_{x}}-\frac{1}{x-x_{1}} Q_{1} \mathbf{b}_{1}^{1} \mathbf{a}_{1}^{1} e^{\partial_{x}}\right)\left(1-Q_{2} e^{\partial_{x}}-\frac{1}{x-x_{1}} Q_{2} \mathbf{b}_{2}^{1} \mathbf{a}_{2}^{1} e^{\partial_{x}}\right)- \\
& \quad-\frac{1}{x-x_{1}} Q_{2} \mathbf{b}_{2}^{1} \mathbf{a}_{1}^{1} e^{\partial_{x}} \frac{1}{x-x_{1}} Q_{1} \mathbf{b}_{1}^{1} \mathbf{a}_{2}^{1} e^{\partial_{x}}=\left(1-Q_{1} e^{\partial_{x}}\right)\left(1-Q_{2} e^{\partial_{x}}\right)- \\
& \quad-\frac{1}{x-x_{1}} Q_{1} \mathbf{b}_{1}^{1} \mathbf{a}_{1}^{1} e^{\partial_{x}}\left(1-Q_{2} e^{\partial_{x}}\right)-\frac{1}{x-x_{1}} Q_{2} \mathbf{b}_{2}^{1} \mathbf{a}_{2}^{1} e^{\partial_{x}}\left(1-Q_{1} e^{\partial_{x}}\right)- \\
& -\frac{1}{x-x_{1}} \frac{1}{x-1} Q_{1} Q_{2} \mathbf{b}_{2}^{1}\left[\mathbf{a}_{1}^{1}, \mathbf{b}_{1}^{1}\right] \mathbf{a}_{2}^{1} e^{2 \partial_{x}}-\left[e^{\partial_{x}}, \frac{1}{x-x_{1}}\right] Q_{2} \mathbf{b}_{2}^{1} \mathbf{a}_{2}^{1} e^{\partial_{x}}=: \text { same : }
\end{aligned}
$$

Degeneration $q \rightarrow 1$

$$
\begin{aligned}
& N \text {-site } U_{q}\left(\mathfrak{g l}_{K}\right) \mathrm{XXZ} \xrightarrow{\text { spectral duality }} K \text {-site } U_{q}\left(\mathfrak{g l}_{N}\right) \mathrm{XXZ} \\
& \begin{array}{c}
q=e^{\gamma} \rightarrow 1 \\
v=q^{2 \times} \rightarrow 1+2 \gamma x \\
q^{2 v \partial_{v}} \rightarrow e^{\partial_{\chi}}
\end{array} \\
& \downarrow \begin{array}{c}
q^{2 v \partial_{v}} \rightarrow e^{q} \rightarrow 1 \\
v=e^{2 x} \rightarrow 1+2 \gamma x
\end{array} \\
& N \text {-site } \mathfrak{g l}_{K} X X X \quad \xrightarrow{\text { spectral duality }} K \text {-site } \mathfrak{g l}_{N} \text { trig Gaudin } \\
& N \text {-site } \mathfrak{g l}_{K} \text { rat Gaudin } \xrightarrow{\text { spectral duality }} K \text {-site } \mathfrak{g l}_{N} \text { rat Gaudin }
\end{aligned}
$$

Trigonometric Gaudin limit

q-Bose turns into Bose:

$$
\begin{gathered}
\widetilde{\mathbf{A}}_{a}^{i}, \widetilde{\mathbf{B}}_{b}^{j} \xrightarrow{q \rightarrow 1} \mathbf{a}_{a}^{i}, \mathbf{b}_{b}^{j}, \\
{\left[\mathbf{a}_{a}^{i}, \mathbf{a}_{b}^{j}\right]=\left[\mathbf{b}_{a}^{i}, \mathbf{b}_{b}^{j}\right]=0,} \\
\hat{D}_{K, N}\left(q^{-2 v \partial_{v}}\right) \xrightarrow{q=e^{\gamma} \rightarrow 1}(-2 \gamma)^{N} \underset{{ }_{c o l}^{j}}{\operatorname{det}_{c o l}^{j}}\left(x-\mathbf{L}_{\mathrm{tG}}\left(e^{-\partial_{x}}\right)\right),
\end{gathered}
$$

where $\left[\mathbf{L}_{\mathrm{tG}}\left(e^{-\partial_{x}}\right)\right]_{i j}=\delta_{i j} x_{i}+\delta_{i>j} \sum_{a=1}^{K} \mathbf{a}_{a}^{j} \mathbf{b}_{a}^{i}+\sum_{a=1}^{K} \frac{Q_{a}}{e^{-\partial_{x}}-Q_{a}} \mathbf{a}_{a}^{j} \mathbf{b}_{a}^{i}$ and $\widetilde{\operatorname{det}_{c o l}}$ is very peculiar deformation of determinant

Trigonometric Gaudin limit

q-Bose turns into Bose:

$$
\widetilde{\mathbf{A}}_{a}^{i}, \widetilde{\mathbf{B}}_{b}^{j} \xrightarrow{q \rightarrow 1} \mathbf{a}_{a}^{i}, \mathbf{b}_{b}^{j}
$$

$$
\begin{gathered}
{\left[\mathbf{a}_{a}^{i}, \mathbf{a}_{b}^{j}\right]=\left[\mathbf{b}_{a}^{i}, \mathbf{b}_{b}^{j}\right]=0, \quad\left[\mathbf{a}_{a}^{i}, \mathbf{a}_{b}^{j}\right]=-\delta_{i j} \delta_{a b} .} \\
\hat{D}_{K, N}\left(q^{-2 v \partial_{v}}\right) \xrightarrow{q=e^{\gamma} \rightarrow 1}(-2 \gamma)^{N} \underset{\operatorname{col}}{\operatorname{det}}\left(x-\mathbf{L}_{\mathrm{tG}}\left(e^{-\partial_{x}}\right)\right),
\end{gathered}
$$

where $\left[\mathbf{L}_{\mathrm{tG}}\left(e^{-\partial_{x}}\right)\right]_{i j}=\delta_{i j} x_{i}+\delta_{i>j} \sum_{a=1}^{K} \mathbf{a}_{a}^{j} \mathbf{b}_{a}^{i}+\sum_{a=1}^{K} \frac{Q_{a}}{e^{-\partial_{x}-Q_{a}}} \mathbf{a}_{a}^{j} \mathbf{b}_{a}^{i}$ and $\operatorname{det}_{\text {col }}$ is very peculiar deformation of determinant

$$
\begin{gathered}
\widetilde{\underset{c o l}{\operatorname{det}}} \mathbf{M}=\sum_{m=0}^{N-2}(-1)^{m} \sum_{J=\left\{i_{1}<\ldots<i_{m}\right\}} \sum_{\sigma \in \mathfrak{S}_{N}}(-1)^{\operatorname{inv}(\sigma)} \prod_{\alpha=1}^{m}\left(\sum_{j=1}^{i_{\alpha}-1} \delta_{\sigma(j)>i_{\alpha}}\right) . \\
\cdot \mathbf{M}_{\sigma(1), 1} \cdots \mathbf{M}_{\sigma\left(i_{1}-1\right), i_{1}-1} \delta_{\sigma\left(i_{1}\right) i_{1}} \mathbf{M}_{\sigma\left(i_{1}+1\right), i_{1}+1} \cdots
\end{gathered}
$$

$$
\cdots \mathbf{M}_{\sigma\left(i_{2}-1\right), i_{2}-1} \delta_{\sigma\left(i_{2}\right) i_{2}} \mathbf{M}_{\sigma\left(i_{2}+1\right), i_{2}+1} \cdots \mathbf{M}_{\sigma(K), K}
$$

Normal ordering in Gaudin.

Normal ordering theorem II.

$$
\begin{aligned}
& \prod_{a=1}^{K}\left(1-Q_{a} e^{\partial_{x}}\right) \underset{\mathrm{col}}{\underset{\operatorname{det}}{ }}\left(x-\mathbf{L}_{\mathrm{tG}}\left(e^{-\partial_{x}}\right)\right)= \\
&=: \prod_{a=1}^{K}\left(1-Q_{a} e^{\partial_{x}}\right) \operatorname{det}_{\mathrm{col}}\left(x-\mathbf{L}_{\mathrm{tG}}\left(e^{-\partial_{x}}\right)\right)
\end{aligned}
$$

(No tilde on the right)
Example. $K=N=1$:

$$
\left.\begin{array}{rl}
& \left(1-Q_{1} e^{\partial_{x}}\right)\left(x-x_{1}-\frac{Q_{1}}{e^{-\partial_{x}}-Q_{1}} \mathbf{a}_{1}^{1} \mathbf{b}_{1}^{1}\right)= \\
= & \left(x-x_{1}-\frac{Q_{1}}{e^{-\partial_{x}}-Q_{1}}-\frac{Q_{1}}{e^{-\partial_{x}}-Q_{1}} \mathbf{b}_{1}^{1} \mathbf{a}_{1}^{1}-\frac{Q_{1}}{e^{-\partial_{x}}-Q_{1}}\left[\mathbf{a}_{1}^{1}, \mathbf{b}_{1}^{1}\right]\right.
\end{array}\right)\left(1-Q_{1} e^{\partial_{x}}\right) .
$$

Degeneration. Resume.

XXX/trig Gaudin spectral duality

$$
\begin{gathered}
\prod_{i=1}^{N}\left(x-x_{i}\right) \operatorname{det}_{\operatorname{col}}\left(\mathbf{1}-\mathbf{T}(x) e^{\partial_{x}}\right)=: \prod_{i=1}^{N}\left(x-x_{i}\right) \operatorname{det}_{\operatorname{col}}\left(\mathbf{1}-\mathbf{T}(x) e^{\partial_{x}}\right):= \\
=: \prod_{a=1}^{K}\left(1-Q_{a} e^{\partial_{x}}\right) \operatorname{det}_{\operatorname{col}}\left(x-{L_{\mathrm{tG}}}\left(e^{-\partial_{x}}\right)\right):= \\
=\prod_{a=1}^{K}\left(1-Q_{a} e^{\partial_{x}}\right) \widetilde{\operatorname{det}} \underset{\operatorname{col}}{K}\left(x-{\left.L_{\mathrm{tG}}\left(e^{-\partial_{x}}\right)\right)}^{=}\right.
\end{gathered}
$$

The classical results hold under the normal ordering!

The plan

- Philosophy: branes, gauge theories and CFT
- Technicalities: XXZ/XXZ spectral duality
- Possible generalization: quantum $p-q$ duality

The double pentagon of dualities

Further generalization. "Double" quantization.

XXZ chain arises in the limit $\epsilon_{2} \rightarrow 0$ (Nekrasov-Shatashvili).
What happens for $\epsilon_{2} \neq 0$?
Bethe ansatz equations for Level set of Hamiltonians of quantum $X X Z$ chains \longleftrightarrow the classical trigonometric quantum XXZ chains

Ruijsenaars-Schneider models
[Gorsky, Zabrodin, Zotov, arXiv:1310.6958]
$\epsilon_{2} \neq 0$ quantizes the quantum/classical ($Q C$) dual RS system. Spectral duality corresponds to the quantum $p-q$ duality in the dual system:

$$
\begin{aligned}
\mathbf{H}^{\mathrm{RS}}(x) M_{Y}\left(x_{i}\right) & =\epsilon_{Y} M_{Y}\left(x_{i}\right) \\
M_{Y}\left(x_{i}=q^{R_{i}+N-i}\right) & =M_{R}\left(x_{i}=q^{Y_{i}+N-i}\right) \\
\mathbf{H}^{\mathrm{RS}}(Y) M_{Y}\left(x_{i}=q^{R_{i}+N-i}\right) & =\epsilon_{R} M_{Y}\left(x_{i}=q^{R_{i}+N-i}\right)
\end{aligned}
$$

Energies (Y) are exchanged with coordinates $\left(x_{i}\right)$. On the classical level - canonical transformation $(x, p) \rightarrow(\epsilon, \phi)$.

Degeneration $q \rightarrow 1$

$$
\begin{aligned}
& X X Z \quad \text { spectral duality } \quad X X Z \\
& \downarrow \begin{array}{c}
q \rightarrow 1 \\
q^{2 v \partial_{v}} \rightarrow e^{\partial_{x}}, \text { finite! } \\
v=q^{2 x} \rightarrow 1+2 \gamma x
\end{array} \\
& \xrightarrow{\text { spectral duality }} \text { trig Gaudin } \\
& \text { rat Gaudin } \xrightarrow{\text { spectral duality }} \text { rat Gaudin }
\end{aligned}
$$

Spectral duality and p-q duality

Conclusions and prospects

- Spectral duality is key to many results in gauge/string theory.
- We demonstrate spectral duality between $U_{q}\left(\mathfrak{g l}_{K}\right) N$-site and $U_{q}\left(\mathfrak{g l}_{N}\right) K$-site XXZ spin chains.
- Beyond the $\epsilon_{2} \rightarrow 0$ limit the spectral duality becomes p - q duality in the QC dual integrable system.
- It would be interesting to investigate the role pf $p-q$ duality in CFT.

Thank you for your attention!

