# On the particle excitations in the XXZ- spin chain. 

A.Ovchinnikov ${ }^{1}$<br>${ }^{1}$ INR, Moscow<br>Quarks 2014

## Introduction

$$
H_{X X Z}=\sum_{i=1}^{L}\left(S_{i}^{x} S_{i+1}^{x}+S_{i}^{y} s_{i+1}^{y}+\Delta S_{i}^{z} s_{i+1}^{z}\right), \quad \Delta=\cos (\eta) .
$$

- We study the excited states for the XXZ- spin chain corresponding to the complex roots of the Bethe Ansatz equations with the imaginary part equal to $\pi / 2$.
- We propose the particle-hole symmetry which relates the eigenstates build up from the two different pseudovacuum states.
- We find the XXX- spin chain limit for the eigenstates with the complex roots.
- We comment on the low-energy excited states for the XXZ- spin chain.


## Complex roots.

Bethe Ansatz solution:

$$
\begin{gathered}
\left(\frac{\sinh \left(t_{\alpha}-i \eta / 2\right)}{\sinh \left(t_{\alpha}+i \eta / 2\right)}\right)^{L}=\prod_{\gamma \neq \alpha} \frac{\sinh \left(t_{\alpha}-t_{\gamma}-i \eta\right)}{\sinh \left(t_{\alpha}-t_{\gamma}+i \eta\right)} \\
\phi(t)=\frac{1}{i} \ln \left(-\frac{\sinh (t-i \eta / 2)}{\sinh (t+i \eta / 2)}\right), \quad \phi_{2}(t)=\frac{1}{i} \ln \left(-\frac{\sinh (t-i \eta)}{\sinh (t+i \eta)}\right) .
\end{gathered}
$$

Quntum numbers $n_{\alpha}(\alpha=1, \ldots \mathrm{M})$ :

$$
L \phi\left(t_{\alpha}\right)=2 \pi n_{\alpha}+\sum_{\gamma \neq \alpha} \phi_{2}\left(t_{\alpha}-t_{\gamma}\right)
$$

Known complex solutions (k-strings):

$$
t_{n}=t_{0}+i \eta n, \quad n=-(k-1) \ldots(k-1) .
$$

New complex solutions:

$$
t_{\alpha}=t_{\alpha}^{\prime}+i \pi / 2
$$

where $t_{\alpha}^{\prime}$ - is Real.

## Complex roots and the Particle-Hole symmetry.

From the XX- spin chain limit $(\Delta=0)$ by the continuity argument it follows that for the XXZ- spin chain:

1) The complex solution of the form $t_{\alpha}=t_{\alpha}^{\prime}+i \pi / 2$ are exist. In fact for the $X X$-chain we have the BA equations $L \phi\left(t_{1}\right)=2 \pi n_{1}$ which shows that for $n_{1}>L / 4$ we have $t_{1}=t_{1}^{\prime}+i \pi / 2$ ( $M=L / 2$ ).

THEOREM: For each comlex root $t_{\alpha}$ the complex conjugate $t_{\alpha}^{*}$ is also a root unless $t_{\alpha}=t_{\alpha}^{\prime}+i \pi / 2$.
2) Consider two eigenstates build up starting from two different pseudovacuum states $\left(|0\rangle=|\downarrow\rangle\left(t_{\alpha}, n_{\alpha}\right)\right.$ and $|\uparrow\rangle\left(t_{\alpha}^{*}, n_{\alpha}^{*}\right)$. Let $n_{0 i}$ are the holes in the usual BA state. Then we have for the "dual" states the relations

$$
n_{i}^{\star}=L / 2-n_{0 i}, \quad\left(n_{0 i}>0\right), \quad n_{i}^{\star}=-L / 2-n_{0 i}, \quad\left(n_{0 i}<0\right) .
$$

where $i=1, \ldots M^{*}, M^{*}=L-M$

## Evolution of the eigenstates with $\eta$ at fixed quantum numbers.

Let us consider the evolution of the eigenstates with particles (complex roots) when we vary $\eta$ from $\eta=\pi / 2(\mathrm{XX})$ to $\eta=0(\mathrm{XXX})$ at fixed quantum numbers $n_{\alpha}$ at arbitrary

$$
M=\frac{L}{2}+k
$$

For example consider the state without the holes at the real axis. Define the following function:

$$
n_{L}(t)=\frac{1}{2 \pi}\left(L \phi(t)-\sum_{\gamma} \phi_{2}\left(t-t_{\gamma}\right)\right) .
$$

Using this function since $n_{\max }=\left[n_{C}\right]$ where $n_{c}=n_{L}(\infty)$, it easy to calculate the number of vacancies at the real axis $R$ and the number of complex roots $c$ :

$$
\begin{gathered}
R=\frac{L}{2}-k+2\left[\frac{1}{2}+\frac{k \eta}{\pi}\right], \\
C=M-R=2 k-2\left[\frac{1}{2}+\frac{k \eta}{\pi}\right] .
\end{gathered}
$$

We have the following eigenstate without the holes on the real axis:

$$
|\phi(R, C)\rangle=\left|\phi\left(\frac{L}{2}-k+2\left[\frac{1}{2}+\frac{k \eta}{\pi}\right], \quad 2 k-2\left[\frac{1}{2}+\frac{k \eta}{\pi}\right]\right)\right\rangle .
$$

## Evolution of the states with particles.

When $\eta$ decreases from $\pi / 2$ to 0 the roots and the holes on the real axis at the points $\eta_{m}=\pi / k(m+1 / 2)$ are pushed to the infinity and then jumps upwards to the line $I m t=\pi / 2$ i.e. becomes complex roots.

The jumps happen when $n_{C}=n_{L}(\infty)$ as a function of $\eta$ crosses the points $n_{\alpha}$ (the roots or the holes).

For example without the holes on the real axis we have:

$$
|\phi(L / 2, k)\rangle(\eta=\pi / 2) \rightarrow|\phi(L / 2-k, 2 k)\rangle(\eta \rightarrow 0) .
$$

## XXX- limit of states with particles.

In the XXX spin chain there is NO complex roots of this type! Then what is the limit of the states with particles at $\eta \rightarrow 0$ ? Since

$$
\left.B(t)\right|_{t-f i x e d} \rightarrow \eta f(t) S^{+}+O\left(\eta^{2}\right)
$$

we find that

$$
\left.|\phi(L / 2-k, 2 k)\rangle \rightarrow\left(S^{+}\right)^{2 k}|\phi(L / 2-k)\rangle\right\rangle_{X X X}^{(2 k)} .
$$

For the XXX chain the number of the real roots is $L / 2-k$, so that there is $L / 2+k$ vacancies on the real axis. Then there is $2 k$ holes, which is indicated in the last equation.
What are the positions of these holes?
The answer is the following. Let $n_{j}$ to be the quantum numbers of the complex roots at $\eta \sim 0$. Then the positions of the holes $n_{0 i}$ are:

$$
n_{0 i}=L / 2-n_{i} \quad\left(n_{i}>0\right), \quad n_{0 i}=-L / 2-n_{i} \quad\left(n_{i}<0\right) .
$$

In fact, using the Particle-Hole symmetry we obtain:

$$
|\phi(L / 2-k, 2 k)\rangle_{X X Z} \rightarrow\left(|\phi(L / 2-k)\rangle_{X X X}^{(2 k)}\right)^{*} .
$$

Comparing the two equations for the states we find $n_{0 i}$ since the states $|\phi(L / 2-k)\rangle$ in the RHS of these equations belong to the same spin multiplet in XXX.

## Low lying excitations.

Cosider the low-energy excitations.

1) $k=1$-Two particles. Dispersion relation for one particle:

$$
\epsilon(p)=\frac{\pi}{2} \frac{\sin (\eta)}{\eta} \sin (p)
$$

Totel energy and momentum

$$
\Delta E=\epsilon\left(p_{1}\right)+\epsilon\left(p_{2}\right), \quad \Delta P=p_{1}+p_{2} .
$$

2) $k=0$-One particle and one hole.
3) $k=-1$-Two holes.

Luttinger liquid relation:

$$
\Delta E=\frac{\pi v}{2 L}\left(\xi(\Delta N)^{2}+(1 / \xi)(\Delta Q)^{2}\right) .
$$

$\Delta N_{1,2}$ can be positive or negative!

## Conclusion

- We study the excited states for the XXZ- spin chain corresponding to the complex roots of the Bethe Ansatz equations with the imaginary part equal to $\pi / 2$.
- We propose the particle-hole symmetry which relates the eigenstates build up from the two different pseudovacuum states.
- We find the XXX- spin chain limit for the eigenstates with the complex roots.
- We comment on the low-energy excited states for the XXZ- spin chain.

