Conformal algebra: R-matrix and star-triangle relations.

D. Chicherin ², <u>A. P. Isaev</u>¹ and S. Derkachov ³

¹Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia

²Chebyshev Laboratory, St.-Petersburg State University, 14th Line, 29b, Saint-Petersburg, 199178 Russia

³St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 27, 191023 St. Petersburg, Russia

> Quarks - 2014, June 2-8, 2014, Suzdal, Russia

Plan

- Introduction.
 - Star-triangle relations (STR) and multiloop calculations
- **2** \mathcal{R} -operators and L-operators
 - R- and L-operators for conformal algebra
 - Conformal algebra conf(ℝ^{p,q})
 - Spinor and differential representations of $conf(\mathbb{R}^{p,q})$
- **3** R-matrix and general \mathcal{R} -operator

Star-triangle relation (STR)

To evaluate multi-loop Feynman integrals we have to consider integral

$$\int \frac{d^D z}{(x-z)^{2\alpha} z^{2\beta} (z-y)^{2\gamma}}.$$

where $x, y, z \in \mathbb{R}^D$, $x^{2\beta} = (x_\mu x^\mu)^\beta$. Interesting special case $\alpha + \beta + \gamma = D$ firstly considered in CFT (see e.g. E.S.Fradkin, M.Ya.Palchik, Phys. Rep. 1978)

$$\int \frac{d^Dz}{(x-z)^{2\alpha'} z^{2(\alpha+\beta)} (z-y)^{2\beta'}} = \frac{G(\alpha,\beta)}{(x)^{2\beta} (x-y)^{2(\frac{D}{2}-\alpha-\beta)} (y)^{2\alpha}},$$

where parameters $\alpha':=\frac{D}{2}-lpha$, $\Rightarrow lpha'+lpha+eta+eta'=$ D,

$$G(\alpha, \beta) = \frac{a(\alpha + \beta)}{a(\alpha)a(\beta)}, \quad a(\beta) = \frac{\Gamma(\beta')}{\pi^{D/2} 2^{2\beta} \Gamma(\beta)}.$$

Graphic representation of Star Triangle Relation (reconstruction of Feynman graphs):

$$x \xrightarrow{\alpha} y = \frac{1}{(x-y)^{2\alpha}} \Rightarrow \frac{\alpha+\beta}{x} = G(\alpha,\beta) \cdot \frac{\beta}{x} = \frac{\alpha}{(\alpha+\beta)'}$$

Operator version of STR: (API, 2003)

$$\hat{\rho}^{-2\alpha} \cdot \hat{q}^{-2(\alpha+\beta)} \cdot \hat{\rho}^{-2\beta} = \hat{q}^{-2\beta} \cdot \hat{\rho}^{-2(\alpha+\beta)} \cdot \hat{q}^{-2\alpha}$$

where we have used Heisenberg algebra: $[\hat{q}_{\mu}, \ \hat{p}_{\nu}] = \delta_{\mu\nu}$. Proof.

$$\langle x | \hat{p}^{-2\alpha} \cdot \hat{q}^{-2(\alpha+\beta)} \cdot \hat{p}^{-2\beta} | y \rangle = \langle x | \hat{q}^{-2\beta} \cdot \hat{p}^{-2(\alpha+\beta)} \cdot \hat{q}^{-2\alpha} | y \rangle$$

$$\langle x | \hat{p}^{-2\alpha} | y \rangle = a(\alpha) (x - y)^{-2\alpha'} .$$

Any STR is related to a solution R of the Yang-Baxter equation

$$\mathcal{R}_{12}(u) \, \mathcal{R}_{23}(u+v) \, \mathcal{R}_{12}(v) = \mathcal{R}_{23}(v) \, \mathcal{R}_{12}(u+v) \, \mathcal{R}_{23}(u)$$

u, v — are spectral parameters (YBE \Rightarrow integrable models, e.g. Zamolodchikov's "Fishnet" diagram IM).

R-operators and L-operators

Our aim is to find R which corresponds to the operator STR:

$$\hat{p}^{2u} \cdot q^{2(u+v)} \cdot \hat{p}^{2v} = q^{2v} \cdot \hat{p}^{2(u+v)} \cdot q^{2u}. \tag{1}$$

Eq. (1) can be written in two equivalent forms

$$\hat{p}_{2}^{2u} \cdot q_{12}^{2(u+v)} \cdot \hat{p}_{2}^{2v} = q_{12}^{2v} \cdot \hat{p}_{2}^{2(u+v)} \cdot q_{12}^{2v} \qquad (1 \leftrightarrow 2) ,$$

where $[q_k^\mu,\,\hat{p}_j^\nu]=i\delta_{kj}\delta^{\mu\nu}$ and $q_{12}^\mu=q_1^\mu-q_2^\mu.$ Then one can prove that \mathcal{R} -operator

$$\underline{\mathcal{R}_{12}(u-v) = q_{12}^{2(u_--v_+)} \cdot \hat{p}_2^{2(u_+-v_+)} \cdot \hat{p}_1^{2(u_--v_-)} \cdot q_{12}^{2(u_+-v_-)}} \in \operatorname{End}(V_{\Delta_1} \otimes V_{\Delta_2})$$

where V_{Δ} is the space of conformal fields with conf. dimension Δ and

$$u_{+} = u + \frac{\Delta_{1} - D}{2}, \quad u_{-} = u - \frac{\Delta_{1}}{2}, \quad v_{+} = v + \frac{\Delta_{2} - D}{2}, \quad v_{-} = v - \frac{\Delta_{2}}{2},$$

satisfies YB equation.

For $\Delta_1 = \Delta_2 = \Delta$ the operator \mathcal{R}_{12} is

$$R_{ab}(\alpha;\xi) := (\hat{q}_{(ab)})^{2(\alpha+\xi)}(\hat{p}_{(a)})^{2\alpha}(\hat{p}_{(b)})^{2\alpha}(\hat{q}_{(ab)})^{2(\alpha-\xi)} =$$

$$= 1 + \alpha h_{(ab)}(\xi) + \alpha^2 \dots ,$$

where $\alpha = u - v$, $\xi = \frac{D}{2} - \Delta$ and Hamiltonian densities $h_{(ab)}(x)$ are

$$\begin{split} &h_{(ab)}(\xi) = 2 \, \ln(\hat{q}_{(ab)})^2 + (\hat{q}_{(ab)})^{2\xi} \, \ln(\hat{p}_{(a)}^2 \, \hat{p}_{(b)}^2) \, (\hat{q}_{(ab)})^{-2\xi} = \\ &= \hat{p}_{(a)}^{-2\xi} \, \ln(\hat{q}_{(ab)})^2 \, \hat{p}_{(a)}^{2\xi} + \hat{p}_{(b)}^{-2\xi} \, \ln(\hat{q}_{(ab)})^2 \, \hat{p}_{(b)}^{2\xi} + \ln(\hat{p}_{(a)}^2 \, \hat{p}_{(b)}^2) \; . \end{split}$$

Using the standard procedure one can construct an integrable system with Hamiltonian $H(\xi) = \sum_{a=1}^{N-1} h_{(a,a+1)}(\xi)$. For D=1 and $\xi=1/2$ this Hamiltonian reproduces the Hamiltonian for the Lipatov's integrable model which is related to BFKL equation.

The \mathcal{R} -operator acts in the tensor product of two representation spaces of conformal algebra $conf(\mathbb{R}^D) = so(D+1,1)$

$$\Phi_{\Delta_1}(\textbf{\textit{x}}_1) \otimes \Phi_{\Delta_2}(\textbf{\textit{x}}_2) \in \textit{\textbf{V}}_{\Delta_1} \otimes \textit{\textbf{V}}_{\Delta_2} \; ,$$

where $\Phi_{\Delta}(x)$ are spinless fields with conformal dimension Δ . The meaning of \mathcal{R} : it intertwines two representations

$$\mathcal{R}_{12}(u-v): \quad V_{\Delta_1} \otimes V_{\Delta_2} \to V_{\Delta_2} \otimes V_{\Delta_1} \; .$$

or

$$\mathcal{R}_{12}(u-v)\cdot A_{\Delta_1}\otimes B_{\Delta_2}=B'_{\Delta_2}\otimes A'_{\Delta_1}\cdot \mathcal{R}_{12}(u-v)$$
.

where $A_{\Delta} \in \text{End}(V_{\Delta})$.

To demonstrate this we construct L-operator (quantum analog of a Lax operator — another important object in quantum integr. models)

$$||(\mathbf{L}^{(\Delta)})^{\alpha}_{\beta}|| = \mathbf{L}^{(\Delta)} : V \otimes V_{\Delta} \to V \otimes V_{\Delta}$$

where V is the space of a matrix (e.g., spinor) representation T_s of $conf(\mathbb{R}^D) \equiv conf$. The L-operator satisfies RLL relations

$$\mathcal{R}_{23}(u-v) (L_2^{(\Delta_1)})_{\beta}^{\alpha}(u) (L_3^{(\Delta_2)})_{\gamma}^{\beta}(v) = (L_2^{(\Delta_2)})_{\beta}^{\alpha}(v) (L_3^{(\Delta_1)})_{\gamma}^{\beta}(u) \mathcal{R}_{23}(u-v) ,$$

where

$$(\mathsf{L}_2^{(\Delta)})^lpha_eta = \mathcal{T}_\mathsf{s}(\mathcal{U}(\mathsf{conf}))^lpha_eta \otimes
ho_\Delta(\mathcal{U}(\mathsf{conf})) \otimes \mathsf{1}$$

$$(L_3^{(\Delta)})^{\alpha}_{\beta} = T_s(\mathcal{U}(\mathsf{conf}))^{\alpha}_{\beta} \otimes 1 \otimes \rho_{\Delta}(\mathcal{U}(\mathsf{conf}))$$

$$\mathcal{R}_{23}(u-v) = 1 \otimes \rho_{\Delta_1}(\mathcal{U}(\mathsf{conf})) \otimes \rho_{\Delta_2}(\mathcal{U}(\mathsf{conf}))$$

and $\mathcal{U}(\mathsf{conf})$ — enveloping algebra of conf. We will consider the general case of $\mathsf{conf}(\mathbb{R}^{p,q})$, $p+q=D\Rightarrow n$.

 $\mathbb{R}^{p,q}$ — pseudoeuclidean space with the metric

$$g_{\mu\nu}=\mathrm{diag}(\underbrace{1,\ldots,1}_{p},\underbrace{-1,\ldots,-1}_{q})$$
.

 $\operatorname{conf}(\mathbb{R}^{p,q})$ — Lie algebra of the conformal group in $\mathbb{R}^{p,q}$ generated by $\{L_{\mu\nu}, P_{\mu}, K_{\mu}, D\}$ $(\mu, \nu = 0, 1, \dots, p+q-1)$:

$$egin{aligned} [L_{\mu
u}\,,\,L_{
ho\sigma}] &= i\,(g_{
u
ho}\,L_{\mu\sigma} + g_{\mu\sigma}\,L_{
u
ho} - g_{\mu
ho}\,L_{
u\sigma} - g_{
u\sigma}\,L_{\mu
ho}) \ [K_{
ho}\,,\,L_{\mu
u}] &= i\,(g_{
ho\mu}\,K_{
u} - g_{
ho
u}\,K_{\mu})\,\,,\quad [P_{
ho}\,,\,L_{\mu
u}] &= i\,(g_{
ho\mu}\,P_{
u} - g_{
ho
u}\,P_{\mu})\,\,, \ [D\,,\,K_{\mu}] &= -i\,K_{\mu}\,\,, \ [K_{
ho}\,,\,P_{
u}] &= 2i\,(g_{\mu
u}\,D - L_{\mu
u})\,\,,\quad [P_{\mu}\,,\,P_{
u}] &= 0\,\,, \ [K_{\mu}\,,\,K_{
u}] &= 0\,\,,\quad [L_{\mu
u}\,,\,D] &= 0\,\,. \end{aligned}$$

 $L_{\mu\nu}$ – generators for the rotation group SO(p,q) in $\mathbb{R}^{p,q}$, P_{ν} – shift generators in $\mathbb{R}^{p,q}$,

D – dilatation operator,

 K_{ν} – conformal boost generators.

We have the well known isomorphism:

$$\mathsf{conf}(\mathbb{R}^{p,q}) = \mathsf{so}(p+1,q+1)$$

and on generators it looks like

$$L_{\mu
u} = M_{\mu
u} \; , \quad K_{\mu} = M_{n,\mu} - M_{n+1,\mu} \; , \ P_{\mu} = M_{n,\mu} + M_{n+1,\mu} \; , \quad D = -M_{n,n+1} \; , \quad (n=p+q) \; .$$

where M_{ab} (a, b = 0, 1, ..., n + 1) are generators of so(p + 1, q + 1)

$$[M_{ab}, M_{dc}] = i(g_{bd}M_{ac} + g_{ac}M_{bd} - g_{ad}M_{bc} - g_{bc}M_{ad}),$$

 $g_{ab} = \operatorname{diag}(\underbrace{1, \dots, 1}_{p}, \underbrace{-1, \dots, -1}_{q}, 1, -1).$

Then the quadratic Casimir operator for $conf(\mathbb{R}^{p,q})$ is

$$C_2 = \frac{1}{2} \textit{M}_{ab} \, \textit{M}^{ab} = \frac{1}{2} \left(\textit{L}_{\mu\nu} \textit{L}^{\mu\nu} + \textit{P}_{\mu} \textit{K}^{\mu} + \textit{K}_{\mu} \textit{P}^{\mu} \right) - \textit{D}^2 \; .$$

The first main result is that the explicit form of $conf(\mathbb{R}^{p,q}) = so(p+1,q+1)$ -type L-operator which we search in the form:

$$L(u_+, u_-) = u \operatorname{I} + \frac{1}{2} T_s(M^{ab}) \otimes \rho(M_{ab}) .$$

(looks like split Casimir operator for o(p+1,q+1)) where M_{ab} are generators of so(p+1,q+1) and

$$\rho(M_{ab}) = y_a \frac{\partial}{\partial y^b} - y_b \frac{\partial}{\partial y^a} .$$

Now we specify the spinor matrix representation T_s of the algebra $conf(\mathbb{R}^{p,q}) = so(p+1, q+1)$.

Spinor reps T_s of $conf(\mathbb{R}^{p,q}) = so(p+1,q+1)$

Let $n = p + q = 2\nu (= D)$ be even integer and γ_{μ} ($\mu = 0, ..., n - 1$) be $2^{\frac{n}{2}}$ -dimensional gamma-matrices in $\mathbb{R}^{p,q}$:

$$\gamma_{\mu}\,\gamma_{
u} + \gamma_{
u}\,\gamma_{\mu} = 2\,g_{\mu
u}\,I\,,$$

$$\gamma_{n+1} \equiv \alpha \ \gamma_0 \cdot \gamma_1 \cdots \gamma_{n-1} \ , \quad \alpha^2 = (-1)^{q+n(n-1)/2} = (-1)^{q-\nu} \ ,$$

where α is such that $\gamma_{n+1}^2 = I$. Using gamma-matrices γ_{μ} in $\mathbb{R}^{p,q}$ one can construct representation T_s of $conf(\mathbb{R}^{p,q}) = so(p+1,q+1)$

$$T_{\mathrm{S}}(L_{\mu
u}) = rac{i}{4} \left[\gamma_{\mu}, \, \gamma_{
u}
ight] \equiv \ell_{\mu
u} \,, \quad T_{\mathrm{S}}(K_{\mu}) = \gamma_{\mu} \, rac{(1-\gamma_{n+1})}{2} \equiv k_{\mu} \,,$$
 $T_{\mathrm{S}}(P_{\mu}) = \gamma_{\mu} \, rac{(1+\gamma_{n+1})}{2} \equiv p_{\mu} \,, \quad T_{\mathrm{S}}(D) = -rac{i}{2} \, \gamma_{n+1} \equiv d \,.$

We choose the representation for γ_{μ} in $\mathbb{R}^{p,q}$ as:

$$\gamma_{\mu} = \left(\begin{array}{cc} \mathbf{0} & \sigma_{\mu} \\ \overline{\sigma}_{\mu} & \mathbf{0} \end{array} \right) \;, \;\; \gamma_{n+1} = \left(\begin{array}{cc} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{array} \right) \;,$$

where $\sigma_{\mu}\overline{\sigma}_{\nu} + \sigma_{\nu}\overline{\sigma}_{\mu} = 2\,g_{\mu\nu}\mathbf{1}$, $\overline{\sigma}_{\mu}\sigma_{\nu} + \overline{\sigma}_{\nu}\sigma_{\mu} = 2\,g_{\mu\nu}\mathbf{1}$. Thus, the representation $T_{\mathcal{S}}$ of $conf(\mathbb{R}^{p,q})$ is

$$\ell_{\mu\nu} = \left(\begin{array}{cc} \frac{i}{4} (\boldsymbol{\sigma}_{\mu} \overline{\boldsymbol{\sigma}}_{\nu} - \boldsymbol{\sigma}_{\nu} \overline{\boldsymbol{\sigma}}_{\mu}) & \boldsymbol{0} \\ \boldsymbol{0} & \frac{i}{4} (\overline{\boldsymbol{\sigma}}_{\mu} \boldsymbol{\sigma}_{\nu} - \overline{\boldsymbol{\sigma}}_{\nu} \boldsymbol{\sigma}_{\mu}) \end{array} \right) = \left(\begin{array}{cc} \boldsymbol{\sigma}_{\mu\nu} & \boldsymbol{0} \\ \boldsymbol{0} & \overline{\boldsymbol{\sigma}}_{\mu\nu} \end{array} \right) \; ,$$

$$p^{\mu} = \left(egin{array}{ccc} \mathbf{0} & \mathbf{0} \\ \overline{\boldsymbol{\sigma}}^{\mu} & \mathbf{0} \end{array}
ight) \; , \quad k^{\mu} = \left(egin{array}{ccc} \mathbf{0} & \sigma^{\mu} \\ \mathbf{0} & \mathbf{0} \end{array}
ight) \; , \quad d = -rac{i}{2} \left(egin{array}{ccc} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{array}
ight) \; .$$

Recall that

$$oldsymbol{\sigma}_{\mu
u} = ||oldsymbol{(\sigma}_{\mu
u})_{lpha}^{\ eta}|| \ , \quad \overline{oldsymbol{\sigma}}_{\mu
u} = ||oldsymbol{(\overline{\sigma}}_{\mu
u})^{\dot{lpha}}_{\ \dot{eta}}|| \ ,$$

are inequivalent spinor representations of so(p, q) = spin(p, q).

Any element of $conf(\mathbb{R}^{p,q})$ in the representation T_s is

$$\begin{split} A &= i (\omega^{\mu\nu} \, \ell_{\mu\nu} + \mathbf{a}^{\mu} \, \mathbf{p}_{\mu} + b^{\mu} \, \mathbf{k}_{\mu} + \beta \, \mathbf{d}) = \\ &= \begin{pmatrix} \frac{\beta}{2} \mathbf{1} + i \omega^{\mu\nu} \boldsymbol{\sigma}_{\mu\nu} & i b^{\mu} \boldsymbol{\sigma}_{\mu} \\ & i a^{\mu} \overline{\boldsymbol{\sigma}}_{\mu} & -\frac{\beta}{2} \mathbf{1} + i \omega^{\mu\nu} \overline{\boldsymbol{\sigma}}_{\mu\nu} \end{pmatrix} \equiv \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} \\ \varepsilon_{21} & \varepsilon_{22} \end{pmatrix} \; . \end{split}$$

It can be considered as the matrix of parameters $\omega^{\mu\nu}$, \mathbf{a}^{μ} , \mathbf{b}^{μ} , $\beta \in \mathbb{R}$.

Further we will consider L-operator

$$\mathrm{L}^{(\Delta)}(u) = u\,\mathrm{I} + \frac{1}{2}T_{s}(M^{ab})\otimes
ho_{\Delta}(M_{ab})$$

Diff. representation of $conf(\mathbb{R}^{p,q}) = so(p+1, q+1)$

The standard differential representation ρ_{Δ} of $conf(\mathbb{R}^{p,q})$ can be obtained by the method of induced representations (G. Mack and A. Salam (1969))

$$\begin{split} \rho_{\Delta}(P_{\mu}) &= -i\partial_{x_{\mu}} \equiv \hat{p}_{\mu} \;, \quad \rho_{\Delta}(D) = x^{\mu}\hat{p}_{\mu} - i\Delta \;, \\ \rho_{\Delta}(L_{\mu\nu}) &= \hat{\ell}_{\mu\nu} + S_{\mu\nu} \;, \quad \rho_{\Delta}(K_{\mu}) = 2\,x^{\nu}\,(\hat{\ell}_{\nu\mu} + S_{\nu\mu}) + (x^{\nu}x_{\nu})\hat{p}_{\mu} - 2i\Delta x_{\mu} \;, \\ \hat{\ell}_{\mu\nu} &\equiv (x_{\nu}\hat{p}_{\mu} - x_{\mu}\hat{p}_{\nu}) \;, \end{split}$$

where $\mathbf{x}_{\mu} \equiv \hat{\mathbf{q}}_{\mu}$ are coordinates in $\mathbb{R}^{\rho,q}$, $\Delta \in \mathbb{R}$ – conformal parameter, $\mathbf{S}_{\mu\nu} = -\mathbf{S}_{\nu\mu}$ are spin generators with commutation relations as for $\hat{\ell}_{\mu\nu}$ and $[\mathbf{S}_{\mu\nu}, \mathbf{x}_{\rho}] = 0 = [\mathbf{S}_{\mu\nu}, \hat{\boldsymbol{p}}_{\rho}]$. For the quadratic Casimir operator we have:

$$ho_{\Delta}(C_2) = rac{1}{2} \left(S_{\mu
u} S^{\mu
u} - \hat{\ell}_{\mu
u} \,\hat{\ell}^{\mu
u}
ight) + \Delta(\Delta - n) \; .$$

The representations ρ_{Δ} and $\rho_{n-\Delta}$ are contragradient to each other and in particular we have $\rho_{\Delta}(C_2) = \rho_{n-\Delta}(C_2)$.

In the representation ρ elements of $conf(\mathbb{R}^{p,q})$ act on the fields $\Phi(\mathbf{x})$:

$$\begin{split} & \rho(\omega^{\mu\nu}\,\mathsf{L}_{\mu\nu} + \mathsf{a}^{\mu}\,\mathsf{P}_{\mu} + \mathsf{b}^{\mu}\,\mathsf{K}_{\mu} + \beta\,\mathsf{D})\,\Phi(\mathbf{x}) = \\ & = \mathrm{Tr}_{\mathsf{T}_{\mathsf{S}}} \left[\begin{pmatrix} \varepsilon_{\mathsf{11}} & \varepsilon_{\mathsf{12}} \\ \varepsilon_{\mathsf{21}} & \varepsilon_{\mathsf{22}} \end{pmatrix} \, \left(\mathsf{T}_{\mathsf{S}}(\mathsf{M}^{\mathsf{ab}}) \cdot \rho(\mathsf{M}_{\mathsf{ab}}) \right) \right] \Phi(\mathbf{x}) \,. \end{split}$$

where $\begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} \\ \varepsilon_{21} & \varepsilon_{22} \end{pmatrix}$ is the matrix of parameters, and the matrix of generators is

$$\frac{1}{2}T_{s}(M^{ab}) \cdot \rho_{\Delta}(M_{ab}) = (T_{s} \otimes \rho) \left(\frac{1}{2}M^{ab} \otimes M_{ab}\right) = \\
= \left(\begin{array}{cc} \frac{\Delta - n}{2} \cdot \mathbf{1} + \mathbf{S} - \mathbf{p} \cdot \mathbf{x} , & \mathbf{p} \\
\mathbf{x} \cdot \mathbf{S} - \overline{\mathbf{S}} \cdot \mathbf{x} - \mathbf{x} \cdot \mathbf{p} \cdot \mathbf{x} + (\Delta - \frac{n}{2}) \cdot \mathbf{x} , & -\frac{\Delta}{2} \cdot \mathbf{1} + \overline{\mathbf{S}} + \mathbf{x} \cdot \mathbf{p} \end{array}\right) ,$$

Here we introduced

$$\begin{split} \boldsymbol{p} &= \tfrac{1}{2} \, \boldsymbol{\sigma}^{\mu} \, \hat{\boldsymbol{p}}_{\mu} = - \tfrac{i}{2} \, \boldsymbol{\sigma}^{\mu} \, \partial_{\boldsymbol{x}_{\mu}} \; , \quad \boldsymbol{x} = - i \, \overline{\boldsymbol{\sigma}}^{\mu} \, \boldsymbol{x}_{\mu} \; , \\ \overline{\boldsymbol{S}} &= \tfrac{1}{2} \, \overline{\boldsymbol{\sigma}}^{\mu\nu} \, \boldsymbol{S}_{\mu\nu} \; , \quad \boldsymbol{S} &= \tfrac{1}{2} \, \boldsymbol{\sigma}^{\mu\nu} \, \boldsymbol{S}_{\mu\nu} \; . \end{split}$$

The action of spin generators $S_{\mu\nu}$ on spin-tensor fields of the type $(\ell,\dot{\ell})$ is

$$\begin{split} [S_{\mu\nu}\Phi]^{\dot{\alpha}_1\cdots\dot{\alpha}_{2\dot{\ell}}}_{\alpha_1\cdots\alpha_{2\ell}} &= (\pmb{\sigma}_{\mu\nu})^{\alpha}_{\alpha_1}\Phi^{\dot{\alpha}_1\cdots\dot{\alpha}_{2\dot{\ell}}}_{\alpha\alpha_2\cdots\alpha_{2\ell}} + \cdots + (\pmb{\sigma}_{\mu\nu})^{\alpha}_{\alpha_2\dot{\ell}}\Phi^{\dot{\alpha}_1\cdots\dot{\alpha}_{2\dot{\ell}}}_{\alpha_1\cdots\alpha_{2\ell-1}\alpha} + \\ &+ (\bar{\pmb{\sigma}}_{\mu\nu})^{\dot{\alpha}_1}_{\phantom{\dot{\alpha}}\dot{\alpha}}\Phi^{\dot{\alpha}_2\cdots\dot{\alpha}_{2\dot{\ell}}}_{\alpha_1\cdots\alpha_{2\ell}} + \cdots + (\bar{\pmb{\sigma}}_{\mu\nu})^{\dot{\alpha}_{2\ell}}_{\phantom{\dot{\alpha}}\dot{\alpha}}\Phi^{\dot{\alpha}_1\cdots\dot{\alpha}_{2\ell-1}\dot{\alpha}}_{\alpha_1\cdots\alpha_{2\ell}} \,. \end{split}$$

For <u>symmetric</u> representations it is convenient to work with the generating functions

$$\Phi(\mathbf{x},\lambda,\tilde{\lambda}) = \Phi_{\alpha_1\cdots\alpha_{2\ell}}^{\dot{\alpha}_1\cdots\dot{\alpha}_{2\ell}}(\mathbf{x})\,\lambda^{\alpha_1}\cdots\lambda^{\alpha_{2\ell}}\,\tilde{\lambda}_{\dot{\alpha}_1}\cdots\tilde{\lambda}_{\dot{\alpha}_{2\ell}}\,,$$

where λ and $\tilde{\lambda}$ are auxiliary spinors and the action of $S_{\mu\nu}$ is given by differential operators over spinors $S_{\mu\nu} = \lambda \, \sigma_{\mu\nu} \partial_{\lambda} + \tilde{\lambda} \, \overline{\sigma}_{\mu\nu} \partial_{\tilde{\lambda}}$:

$$\left[S_{\mu\nu} \Phi \right] (\mathbf{x}, \lambda, \tilde{\lambda}) = \left[\lambda \, \boldsymbol{\sigma}_{\mu\nu} \partial_{\lambda} + \tilde{\lambda} \, \bar{\boldsymbol{\sigma}}_{\mu\nu} \partial_{\tilde{\lambda}} \right] \Phi (\mathbf{x}, \lambda, \tilde{\lambda}) \; ,$$

where
$$\lambda \, \boldsymbol{\sigma}_{\mu\nu} \partial_{\lambda} = \lambda_{\alpha} \, (\boldsymbol{\sigma}_{\mu\nu})^{\alpha}_{\;\;\beta} \, \partial_{\lambda_{\beta}}, \, \tilde{\lambda} \, \bar{\boldsymbol{\sigma}}_{\mu\nu} \partial_{\tilde{\lambda}} = \tilde{\lambda}^{\dot{\alpha}} \, (\bar{\boldsymbol{\sigma}}_{\mu\nu})_{\dot{\alpha}}^{\;\dot{\beta}} \, \partial_{\tilde{\lambda}^{\dot{\beta}}}.$$

For 4-dimensional case $\mathbb{R}^{p,q}=\mathbb{R}^{1,3}$ we have 2-component Weyl spinors $\lambda,\tilde{\lambda}$ and tensor fields $\Phi_{\alpha_1\cdots\alpha_{2\ell}}^{\dot{\alpha}_1\cdots\dot{\alpha}_{2\ell}}(x)$ are automatically symmetric under permutations of dotted and undotted indices separately. Then for n=4 we have

$$\sigma_{\mu} = (\sigma_0, \sigma_1, \sigma_2, \sigma_3) , \qquad \overline{\sigma}_{\mu} = (\sigma_0, -\sigma_1, -\sigma_2, -\sigma_3) ,$$

where $\sigma_0=I_2$ and $\sigma_1,\sigma_2,\sigma_3$ are standard Pauli matrices. Consequently we obtain for the self-dual components of $S_{\mu\nu}$

$$\mathbf{S} = \frac{1}{2} \boldsymbol{\sigma}^{\mu\nu} \, \mathbf{S}_{\mu\nu} = \begin{pmatrix} \frac{1}{2} \, \lambda_1 \partial_{\lambda_1} - \frac{1}{2} \, \lambda_2 \partial_{\lambda_2} & \lambda_2 \partial_{\lambda_1} \\ \lambda_1 \partial_{\lambda_2} & -\frac{1}{2} \, \lambda_1 \partial_{\lambda_1} + \frac{1}{2} \, \lambda_2 \partial_{\lambda_2} \end{pmatrix}$$

and for anti-self-dual components of $S_{\mu\nu}$

$$\overline{\boldsymbol{S}} = \frac{1}{2} \, \overline{\boldsymbol{\sigma}}^{\mu\nu} \, \, \boldsymbol{S}_{\mu\nu} = \begin{pmatrix} \frac{1}{2} \, \tilde{\lambda}^{\dot{1}} \partial_{\tilde{\lambda}^{\dot{1}}} - \frac{1}{2} \, \tilde{\lambda}^{\dot{2}} \partial_{\tilde{\lambda}^{\dot{2}}} & \tilde{\lambda}^{\dot{2}} \partial_{\tilde{\lambda}^{\dot{1}}} \\ \tilde{\lambda}^{\dot{1}} \partial_{\tilde{\lambda}^{\dot{2}}} & -\frac{1}{2} \, \tilde{\lambda}^{\dot{1}} \partial_{\tilde{\lambda}^{\dot{1}}} + \frac{1}{2} \, \tilde{\lambda}^{\dot{2}} \partial_{\tilde{\lambda}^{\dot{2}}} \end{pmatrix}$$

Consider $conf(\mathbb{R}^{p,q}) = so(p+1, q+1)$ -type operator:

$$\begin{split} & \mathrm{L}^{(\Delta,\ell,\dot{\ell})}(u) \equiv \mathrm{L}^{(\Delta,\ell,\dot{\ell})}(u_+,u_-) = u\,\mathrm{I} + \tfrac{1}{2} \mathit{T}_{\mathtt{S}}(\mathit{M}^{ab}) \otimes \rho_{\Delta,\ell,\dot{\ell}}(\mathit{M}_{ab}) = \\ & = \left(\begin{array}{c} u_+ \cdot \mathbf{1} + \mathbf{S} - \mathbf{p} \cdot \mathbf{x} \;, & \mathbf{p} \\ & \\ \mathbf{x} \cdot \mathbf{S} - \overline{\mathbf{S}} \cdot \mathbf{x} - \mathbf{x} \cdot \mathbf{p} \cdot \mathbf{x} + (u_+ - u_-) \cdot \mathbf{x} \;, & u_- \cdot \mathbf{1} + \overline{\mathbf{S}} + \mathbf{x} \cdot \mathbf{p} \end{array} \right) \;, \end{split}$$

where T_s is the spinor representation and $\rho_{\Delta,\ell,\dot\ell}$ is the differential representation of the conformal algebra so(p+1,q+1) which acts on the conformal fields $\Phi_{\Delta,\ell,\dot\ell}(x)$;

$$u_{+} = u + \frac{\Delta - n}{2} \; , \quad u_{-} = u - \frac{\Delta}{2} \; , \quad n = p + q \; ,$$

We have used the expression for the "polarized" Casimir operator $\frac{1}{2} \mathcal{T}_{s}(M^{ab}) \otimes \rho_{\Delta,\ell,\ell}(M_{ab})$ which was discussed in context of the differential representation of the conformal algebra.

Proposition 1.

The operator $L^{(\Delta)}(u_+, u_-)$ satisfies the *RLL* relation

$$\begin{split} \mathcal{R}_{23}(u-v)\,(L_2^{(\Delta_1)})^\alpha_\beta(u)\,(L_3^{(\Delta_2)})^\beta_\gamma(v) = \\ = (L_2^{(\Delta_2)})^\alpha_\beta(v)\,(L_3^{(\Delta_1)})^\beta_\gamma(u)\,\mathcal{R}_{23}(u-v) \quad \in \textit{End}(\textit{V}\otimes\textit{V}_{\Delta_1}\otimes\textit{V}_{\Delta_2})\;, \end{split}$$

with \mathcal{R} -operator $\in End(V_{\Delta_1} \otimes V_{\Delta_2})$

$$\mathcal{R}_{12}(u-v) = q_{12}^{2(u_--v_+)} \cdot \hat{p}_2^{2(u_+-v_+)} \cdot \hat{p}_1^{2(u_--v_-)} \cdot q_{12}^{2(u_+-v_-)},$$

if $S = 0 = \overline{S}$ (for any dimension n = p + q), i.e. in the case of the scalar propagators.

The operator $L^{(\Delta)}(u_+,u_-)$ is also intertwined by the matrix R which acts in $End(V\otimes V)$.

R-matrix and general R-operator

Proposition 2.

For two special cases the operator $L^{(\Delta)}(u)$ satisfies the *RLL* relation

$$R_{12}(u-v)L_1^{(\Delta)}(u)L_2^{(\Delta)}(v) = L_1^{(\Delta)}(v)L_2^{(\Delta)}(u)R_{12}(u-v) \in \textit{End}(V \otimes V \otimes V_{\Delta})$$

with the R-matrix $R_{12}(u) \in \operatorname{End}(V \otimes V)$, where V is the $2^{\frac{n}{2}}$ -dimensional space of spinor representation T_s of $\operatorname{conf}(\mathbb{R}^{p,q})$ and indices 1, 2 are numbers of spaces V.

The two cases are:

- Dimension n=p+q of the space $\mathbb{R}^{p,q}$ is arbitrary and representation ρ_{Δ} of $\text{conf}(\mathbb{R}^{p,q})$ is special and corresponds to the scalars: $\mathbf{S}=0$ and $\bar{\mathbf{S}}=0$.
- Dimension n=p+q of the space $\mathbb{R}^{p,q}$ is fixed by n=4 and representation ρ_{Δ} of conf($\mathbb{R}^{p,q}$) is arbitrary: $\mathbf{S} \neq 0$ and $\mathbf{\bar{S}} \neq 0$.

Remark. The *RLL* relations look like defining relations for the Yangian Y(spin(p+1,q+1)) and $L^{(\Delta)}(u)$ the image of the evaluation repr. of this Yangian.

Let Γ_a be $2^{\frac{n}{2}+1}$ -dim. gamma-matrices in $\mathbb{R}^{p+1,q+1}$ (n=p+q) which generate the Clifford algebra with the basis

$$\Gamma_{a_1\dots a_k} = \frac{1}{k!} \sum_{s \in \mathcal{S}_k} (-1)^{p(s)} \Gamma_{s(a_1)} \cdots \Gamma_{s(a_k)} \ (k \le n+2) \,,$$

where p(s) denote the parity of s. The SO(p+1,q+1)-invariant R-matrix is (it is necessary to take Weyl projection)

$$R(u) = \sum_{k=0}^{n+2} \frac{R_k(u)}{k!} \cdot \Gamma_{a_1...a_k} \otimes \Gamma^{a_1...a_k} \in \operatorname{End}(V \otimes V),$$

where V is the $2^{\frac{n}{2}+1}$ -dimensional space of spinor representation T of SO(p+1,q+1). To satisfy the Yang-Baxter equation the functions $R_k(u)$ have to obey the recurrent relations (R.Shankar and E.Witten (1978), Al.B.Zamolodchikov (1981), M.Karowsky and H.Thun (1981))

$$R_{k+2}(u) = -\frac{u+k}{u+n-k} R_k(u).$$

Proposition 3.

For any spin **S**, \overline{S} and n = p + q = 4 the operator $L^{(\Delta,\ell,\dot{\ell})}(u)$ satisfies the *RLL* relation

$$\begin{split} \mathcal{R}_{12}(u-v)\cdot (L_1^{(\Delta_1,\ell_1,\dot{\ell}_1)})^{\alpha}_{\beta}(u)\cdot (L_2^{(\Delta_2,\ell_2,\dot{\ell}_2)})^{\beta}_{\gamma}(v) = \\ = (L_1^{(\Delta_2,\ell_2,\dot{\ell}_2)})^{\alpha}_{\beta}(v)\cdot (L_2^{(\Delta_1,\ell_1,\dot{\ell}_1)})^{\beta}_{\gamma}(u)\cdot \mathcal{R}_{12}(u-v) \in \\ \in \textit{End}(\textit{V} \otimes \textit{V}_{\Delta_1,\ell_1,\dot{\ell}_1} \otimes \textit{V}_{\Delta_2,\ell_2,\dot{\ell}_2})\;, \end{split}$$

with special Yang-Baxter R-operator

$$[\mathcal{R}_{12} \Phi](\mathbf{x}_{1}, \lambda_{1}, \tilde{\lambda}_{1}; \mathbf{x}_{2}, \lambda_{2}, \tilde{\lambda}_{2}) =$$

$$= \int \frac{\mathrm{d}^{4} q \, \mathrm{d}^{4} k \, \mathrm{d}^{4} y \, \mathrm{d}^{4} z \, e^{i \, (q+k) \, \mathbf{x}_{21}} \, e^{i \, k \, (y-z)}}{q^{2(u_{-}-v_{+}+2)} z^{2(u_{+}-v_{+}+2)} y^{2(u_{-}-v_{-}+2)} k^{2(u_{+}-v_{-}+2)}} \cdot \qquad (2)$$

$$\cdot \Phi(\mathbf{x}_{1} - y, \lambda_{2} \mathbf{z} \overline{\mathbf{k}}, \tilde{\lambda}_{2} \overline{\mathbf{q}} \mathbf{y}; \mathbf{x}_{2} - z, \lambda_{1} \mathbf{q} \overline{\mathbf{z}}, \tilde{\lambda}_{1} \overline{\mathbf{y}} \mathbf{k}),$$

where we have used compact notation

$$\mathbf{x} = \sigma_{\mu} \mathbf{x}^{\mu} / |\mathbf{x}| , \quad \overline{\mathbf{x}} = \overline{\sigma}_{\mu} \mathbf{x}^{\mu} / |\mathbf{x}| .$$

Remark. The integrable model of the type of Zamolodchikov's "Fishnet" diagram Integrable System is not known for Regiven in (2).

Green function for two fields of the types $(\ell,\dot\ell)$ and $(\dot\ell,\ell)$ in conformal field theory and the solution is well known

$$(\Phi(X),\Phi(Y)) = \frac{1}{(2\ell)!} \frac{1}{(2\dot{\ell})!} \frac{\left(\tilde{\lambda}(\overline{\mathbf{x}}-\overline{\mathbf{y}})\eta\right)^{2\ell} \left(\lambda(\mathbf{x}-\mathbf{y})\tilde{\eta}\right)^{2\dot{\ell}}}{(x-y)^{2(4-\Delta)}}.$$

In this Section for simplicity we shall use compact notation

$$\mathbf{x} = \sigma_{\mu} \frac{\mathbf{x}^{\mu}}{|\mathbf{x}|} \; ; \; \overline{\mathbf{x}} = \overline{\sigma}_{\mu} \frac{\mathbf{x}^{\mu}}{|\mathbf{x}|} \tag{3}$$