Random walks

Phase transition in matrix model and knot invariants

Ksenia Bulycheva
ITEP, Moscow
based on a work in progress with A. Gorsky and S. Nechaev

Quarks, 2014

Knot invariants: Jones polynomial

Jones polynomial:

$$
\begin{equation*}
q J\left(L_{1}\right)-q^{-1} J\left(L_{2}\right)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) J\left(L_{3}\right), \quad J(\bigcirc)=q^{\frac{1}{2}}+q^{-\frac{1}{2}} \tag{1}
\end{equation*}
$$

L_{1}

L_{2}

L_{3}

Figure: Skein relation for the Jones polynomial

HOMFLY polynomial:

$$
\begin{equation*}
a P\left(L_{1}\right)-a^{-1} P\left(L_{2}\right)=\left(q^{\frac{1}{2}}-q^{\frac{1}{2}}\right) P\left(L_{3}\right) \tag{2}
\end{equation*}
$$

Knot invariants: Kauffman bracket

$$
\begin{equation*}
\langle L\rangle=\left\langle L_{0}\right\rangle+q^{2}\left\langle L_{1}\right\rangle, \quad\langle O\rangle=q^{\frac{1}{2}}+q^{-\frac{1}{2}} . \tag{3}
\end{equation*}
$$

Figure: Two possible resolutions of a "positive" intersection in a knot.

Random walks and $T_{2, n}$ knot invariants

0 -move merges red areas, 1 -move separates them:

Figure: Trefoil knot with "chessboard" coloring

Random walk of 6 steps on a cirle with circumference 3:

$$
\begin{align*}
& 000 \rightarrow R R R R R R, \tag{4}\\
& 001 \rightarrow R R R L L L, \tag{5}\\
& 011 \rightarrow R L R R L L, \tag{6}\\
& 111 \rightarrow R L R L R L . \tag{7}
\end{align*}
$$

Random walks and $T_{2, n}$ knot invariants

All possible resolutions give all walks on the knot diagram:

Jones polynomial is a partition function for the random walks:
$J\left(T_{2, n}\right)=q^{\#} \quad \sum \quad\left(q^{2}\right)^{\# \text { of turns }}\left(q^{\frac{1}{2}}+q^{-\frac{1}{2}}\right)^{\# \text { of walks through } ~}$.
closed paths of length $2 n$

Refining polynomial invariants

Jones polynomial:

$$
\begin{equation*}
q J\left(L_{1}\right)-q^{-1} J\left(L_{2}\right)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) J\left(L_{3}\right) \tag{9}
\end{equation*}
$$

HOMFLY polynomial:

$$
\begin{equation*}
a P\left(L_{1}\right)-a^{-1} P\left(L_{2}\right)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) P\left(L_{3}\right) \tag{10}
\end{equation*}
$$

Superpolynomial:

$$
\begin{equation*}
\mathcal{P}(a, q, t): \mathcal{P}(a, q,-1)=P(a, q) \tag{11}
\end{equation*}
$$

no skein relation
Categorification:

$$
\begin{equation*}
\mathcal{P}(a, q, t)=\sum a^{i} q^{j} t^{k} \mathcal{H}_{i, j, k} \tag{12}
\end{equation*}
$$

Random walks and $T_{n, n+1}$ knots: Dyck path

Figure: Dyck path

Number of Dyck paths of length $2 n$ is given by the Catalan number C_{n} :

$$
\begin{gather*}
C_{n}=\sum_{k=0}^{n-1} C_{i} C_{n-1-i} . \tag{13}\\
\left.\mathcal{P}(a, q, t)\right|_{q=1, \mathrm{a}^{2} t=1}=\sum_{\pi \in D_{n}} t^{2 S(\pi)} \tag{14}
\end{gather*}
$$

Catalan numbers

$T=\left(\mathbb{C}^{*}\right)^{2}, V$ is a tautological bundle on Hilbert scheme:

$$
\begin{equation*}
C_{n}\left(q_{1}, q_{2}\right)=\chi^{T}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right), \Lambda^{n} V\right) \tag{15}
\end{equation*}
$$

q-Catalan numbers are "Nekrasov-Shatashvili" limit of $C_{n}\left(q_{1}, q_{2}\right)$:

$$
\begin{equation*}
C_{n}(q)=C_{n}(1, q)=\sum_{k=0}^{n-1} q^{k} C_{k}(q) C_{n-1-k}(q), \quad C_{0}(q)=1 \tag{16}
\end{equation*}
$$

q-Catalan numbers can be expressed via Dyck paths:

$$
\begin{equation*}
C_{n}(q)=\sum_{\pi \in D_{n}} q^{2 S(\pi)} \tag{17}
\end{equation*}
$$

Dyck paths weighted with area and length

Generating function for Dyck paths with fixed area and length:

$$
\begin{equation*}
Z(s, q)=\sum_{n=1}^{\infty} s^{n} \sum_{\pi \in D_{n}} q^{2 S(\pi)} \tag{18}
\end{equation*}
$$

Functional equation:

$$
\begin{equation*}
Z(s, q)=1+s Z(s, q) Z(q s, q) \tag{19}
\end{equation*}
$$

At $q=1$:

$$
\begin{equation*}
Z(s, 1)=\frac{1-\sqrt{1-4 s}}{2 s} \tag{20}
\end{equation*}
$$

At $q \neq 1$:
$Z(s, q)=\frac{A_{q}(s)}{A_{q}(s / q)}, \quad A_{q}(s)=\sum_{n=0}^{\infty} \frac{q^{n^{2}}(-s)^{n}}{(q ; q)_{n}}, \quad(t ; q)_{n}=\prod_{k=0}^{n-1}\left(1-t q^{k}\right)$.

Generating function for Dyck paths: Singularity

$$
\begin{equation*}
Z\left(s \rightarrow \frac{1}{4}^{-}, q \rightarrow 1^{-}\right) \sim Z_{\text {reg }}(s, q)+(1-q)^{\frac{1}{3}} F\left(\frac{\frac{1}{4}-s}{(1-q)^{\frac{2}{3}}}\right), \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
F(z)=-2 \frac{d}{d z} \ln \mathrm{Ai}(4 z) \tag{23}
\end{equation*}
$$

$\mathrm{Ai}(z)$ being the Airy function,

$$
\begin{equation*}
\operatorname{Ai}(z)=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(\frac{t^{3}}{3}+t z\right) d t \tag{24}
\end{equation*}
$$

$F(z)$ solves the Painlevé II equation,

$$
\begin{equation*}
F^{\prime \prime}(z)=2 F^{3}(z)+4 z F(z)+2 \tag{25}
\end{equation*}
$$

Third-order phase transition in a matrix model

Yang-Mills theory on a sphere:

$$
\begin{equation*}
Z_{2}\left(g_{Y M}, A\right)=\int[d A][d \Phi] \exp \left\{\int_{S_{2}} d^{2} x\left(\operatorname{Tr} \Phi F+g_{Y M}^{2} \operatorname{Tr} \Phi^{2}\right)\right\} \tag{26}
\end{equation*}
$$

In terms of representations:

$$
\begin{equation*}
Z_{2}\left(g_{Y M}, A\right)=\sum_{R}(\operatorname{dim} R)^{2} e^{-\frac{g_{Y M^{2}}}{2 N} C_{2}(R)} \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{2}(R)=\sum_{i=1}^{N} n_{i}\left(n_{i}-2 i+N+1\right), \quad \operatorname{dim} R=\prod_{i>j}\left(1-\frac{n_{i}-n_{j}}{i-j}\right) \tag{28}
\end{equation*}
$$

2d Yang-Mills theory: large N limit

Introduce continuous variables:

$$
\begin{equation*}
h(x)=-\frac{1}{2}+\frac{i-n_{i}}{N}, \quad x=\frac{i}{N} \tag{29}
\end{equation*}
$$

Effective action in terms of $h(x)$:
$S_{\text {eff }}[h(x)]=-\int_{0}^{1} \int_{0}^{1} d x d x^{\prime} \log \left|h(x)-h\left(x^{\prime}\right)\right|+\frac{g_{Y M}^{2} A}{2} \int_{0}^{1} d x h^{2}(x)-\frac{A}{24}$.
Introduce $\rho(h)=\frac{d x(h)}{d h}, \rho(h) \leq 1$.

2d Yang-Mills theory: phase transition

$$
\begin{equation*}
\frac{\delta S_{e f f}}{\delta h}=0 \Rightarrow \rho=\frac{g_{Y M}^{2} A}{2 \pi} \sqrt{\frac{4}{g_{Y M}^{2} A}-h^{2}} \tag{31}
\end{equation*}
$$

Douglas-Kazakov phase transition:

$$
\begin{equation*}
A_{c r}=\frac{\pi^{2}}{g_{Y M}^{2}} \tag{32}
\end{equation*}
$$

Figure: $\rho(h)$ before and after Douglas-Kazakov phase transition

Yang-Mills action via continuous random walks

Slater determinant for fermions on a circle:

$$
\begin{equation*}
\Psi(\mathbf{n} \mid \boldsymbol{\theta})=\frac{1}{\sqrt{N!}} \underset{1 \leq j, k \leq N}{\operatorname{det}_{1}} \phi_{n_{j}}\left(\theta_{k}\right), \quad \phi_{n_{j}}(\theta)=\frac{1}{\sqrt{2 \pi}} e^{i n_{j} \theta} . \tag{33}
\end{equation*}
$$

Reunion probability:

$$
\begin{equation*}
P_{N}^{R}(t, L \mid \boldsymbol{\theta} \rightarrow 0)=\langle\Psi| e^{-t H_{L}}|\Psi\rangle=\left.\sum_{\mathbf{n}} \Psi(\mathbf{n} \mid \boldsymbol{\theta}) \Psi^{*}(\mathbf{n} \mid \boldsymbol{\theta}) e^{-t E(\mathbf{n})}\right|_{\boldsymbol{\theta} \rightarrow 0}, \tag{34}
\end{equation*}
$$

where $H_{L}=-\frac{2 \pi^{2}}{L^{2}} \sum \frac{\partial^{2}}{\partial \theta_{k}^{2}}$.

Figure: Vicious walkers returning to the starting point

Yang-Mills action via continuous random walks

$$
\begin{equation*}
P_{N}^{R}(t, L \mid \boldsymbol{\theta} \rightarrow 0)=C \delta^{N(N-1) / 2} \sum_{\mathbf{n}} \Delta^{2}(\mathbf{n}) e^{-\frac{2 \pi^{2} t}{N L^{2}} \sum n_{i}^{2}} \tag{35}
\end{equation*}
$$

where $\Delta(\mathbf{n})=\prod_{i<j}\left(n_{i}-n_{j}\right), \delta=\theta_{i}-\theta_{i+1}$. The reunion probability coincides with the partition function on a sphere:

$$
\begin{equation*}
g_{Y M}^{2} A=\left(\frac{2 \pi}{L}\right)^{2} t \tag{36}
\end{equation*}
$$

Critical time $t_{c}=L^{2} / 4$ separates regions with different probability to have certain winding number:

$$
\begin{align*}
\mathbb{P}\left(w=0, t<t_{c}\right) & =1-\mathcal{O}\left(e^{-c N}\right) \tag{37}\\
\mathbb{P}\left(w, t>t_{c}\right) & =C e^{-\kappa w^{2}}+\mathcal{O}\left(N^{-1}\right) \tag{38}
\end{align*}
$$

Future directions

(1) Another statistics in Dyck path (generating functions for Jones, HOMFLY polynomials)

$$
\begin{equation*}
Z(t, q)=\sum t^{n} J_{n, n+1}(q) \sim \vartheta(t ; q) \tag{39}
\end{equation*}
$$

(2) $T_{k n+1, n}$ series of knots

Dyck paths made of $1 \times k$ tiles
(3) Conjectural relation to the Hofstadter problem

