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Outline

@ Phase-space in a semi-analytical model of self-similar infall.

@ Emerging phase-space in N-body simulations.
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Velocity-Distance Relation among Extra-Galactic Nebulae.

@ The Hubble law v = Hr gives initial phase space distribution
for DM particles
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@ The Hubble law v = Hr gives initial phase space distribution
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@ How then the evolution of a density perturbation proceeds in
the phase space!



Phase space around isolated perturbation
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Infall model

Position of each particle in the halo obey
d?r G M(rt)
dt2 r?

For initial perturbations with power-law profiles

SM; [ My\©
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the halo evolves in a self-similar manner, e. g.

M(r,t) = M(t)M(r/R(t))

T(Ti, t) - R(t)A(t/t*)

M (t) r
Pt = gagy X F (R(t))



Infall model
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For the point-like mass excess, e = 1.
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Value of the shape parameter € as a function of scale in ACDM.
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Infall model
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Phase-space for € = 0.2 and zero angular momentum.
Sikivie, Yun Wang & I.T, 1996



Infall model
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Rotational velocity curves for different values of e = 0.2 and 57 = 0.
Sikivie, Yun Wang & I.T, 1996
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Phase-space for € = 0.2 and angular momentum j = 0.2.

Sikivie, Yun Wang & I.T, 1996



Infall model
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Rotational velocity curves for different values of j and € = 0.2.
Sikivie, Yun Wang & I.T, 1996
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p o< 172 between first inner and outer caustics

p o< 7 inside first inner caustics, where
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NFW cusps are derived analytically.

Sikivie, Yun Wang & I.T, 1996



Infall model
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Velocity distribution at Sun position, € = 0.2 and angular
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Singnature of infall in the Local Group.

300 g T

200

P71431

100

—100

Y
HH\H\\‘\\H\\\H‘H\H\H\‘H\HHH‘HHH\H

1 2 3
r

Best fitt R = 1.07 £0.14 Mpc, h = 0.71 £+ 0.5
G. Steigman & I. T, 1998

—-200

o
I ENNNRETRE!



Infall model
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N-body simulation

@ We employed cosmological N-Body code Gadget with the
gravitational softening 0.2 kpc/h.

@ "Milky Way"-like halo was selected from cosmological simulation
of LSS.

@ Cosmological parameters
Q,, =03, Q) =0.7,h =0.7and og = 0.9.
o Selected halo:
suffered its last major merger at z > 2.
has rotation velocity similar to MW.
was resolved by 107 particles within virial radius.

total mass of the halo withing this radius was
Myir = 2.3 X 10'2 Mg /h.

Dolag, Dolgov & I.T, 2013



N-body simulation
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Phase-space after averaging over all angles in conguration space
Dolag, Dolgov & I.T, 2013



N-body simulation
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Phase-space after averaging over solid angle with opening & = 40°.
Dolag, Dolgov & I.T, 2013



N-body simulation
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Velocity distribution at » = 150 kpc. Averages are for Ar = 2 kpc and solid
angles with openings & = 40° (solid line) and & = 20° (dotted line).
Dolag, Dolgov & I.T, 2013



N-body simulation
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Phase-space after averaging over solid angle with opening & = 40°. However, now

| 7] - sign(v,) insted of v,. is used.

Dolag, Dolgov & I.T,, 2013



Conclusions

@ Infall picture do captures main features of the phase space of
Dark Matter for a galaxy like the Milky Way.

@ Extensive and dedicated simulations are needed to very the
extent of its validity



