Phase-space of dark matter particles in the Galaxy halo

I. Tkachev

Institute for Nuclear Research, Moscow

05 June 2014, Suzdal

- Knowledge of DM phase-space distribution is a key for the interpretation of direct search experiments.
- But
 - Different galaxies have different histories
 - Violent relaxation after major merging may give rase to isothermal distribution.
 - Phase-space may be very different for isolated galaxy like MW.

- Knowledge of DM phase-space distribution is a key for the interpretation of direct search experiments.
- But
 - Different galaxies have different histories
 - Violent relaxation after major merging may give rase to isothermal distribution.
 - Phase-space may be very different for isolated galaxy like MW.

- Knowledge of DM phase-space distribution is a key for the interpretation of direct search experiments.
- But
 - Different galaxies have different histories
 - Violent relaxation after major merging may give rase to isothermal distribution.
 - Phase-space may be very different for isolated galaxy like MW.

Outline

- Phase-space in a semi-analytical model of self-similar infall.
- Emerging phase-space in N-body simulations.

Hubble diagramm

• The Hubble law v = Hr gives initial phase space distribution for DM particles

- The Hubble law v = Hr gives initial phase space distribution for DM particles
- This is 3-dim surface in 6-dim phase space, which, according to the Liouville theorem, can nether rip or cross itself.
- How then the evolution of a density perturbation proceeds in the phase space?

- The Hubble law v = Hr gives initial phase space distribution for DM particles
- This is 3-dim surface in 6-dim phase space, which, according to the Liouville theorem, can nether rip or cross itself.
- How then the evolution of a density perturbation proceeds in the phase space?

Phase space around isolated perturbation

Infall model

Position of each particle in the halo obey

$$\frac{d^2r}{dt^2} = -\frac{G\,M(r,t)}{r^2}$$

For initial perturbations with power-law profiles

δM_i	_	$(M_0)^\epsilon$	5
$\overline{M_i}$	_	$\left(\overline{M_i}\right)$	

the halo evolves in a self-similar manner, e. g.

 $M(r,t) = M(t)\mathcal{M}(r/R(t))$

 $r(r_i,t) = R(t)\lambda(t/t_*)$

$$ho(r,t) = rac{M(t)}{R^3(t)} imes F\left(rac{r}{R(t)}
ight)$$

$$\frac{\delta M_i}{M_i} = \left(\frac{M_0}{M_i}\right)^\epsilon$$

For the point-like mass excess, $\epsilon=1.$

Value of the shape parameter ϵ as a function of scale in Λ CDM.

Phase-space for $\epsilon=0.2$ and zero angular momentum.

Rotational velocity curves for different values of $\epsilon=0.2$ and j=0.Sikivie, Yun Wang & I.T., 1996

Phase-space for $\epsilon=0.2$ and angular momentum j=0.2. Sikivie, Yun Wang & I.T., 1996

Infall model

Rotational velocity curves for different values of j and $\epsilon = 0.2$. Sikivie, Yun Wang & I.T., 1996

 $ho \propto r^{-2}~$ between first inner and outer caustics

 $ho \propto r^{-\gamma}$ inside first inner caustics, where

$$\gamma = rac{9\epsilon}{3\epsilon + 1}$$

 $\gamma pprox 1.1$ for $\epsilon = 0.2$

NFW cusps are derived analytically.

Infall model

Velocity distribution at Sun position, $\epsilon=0.2$ and angular momentum j=0.2

Singnature of infall in the Local Group.

Best fit: $R = 1.07 \pm 0.14$ Mpc, $h = 0.71 \pm 0.5$

G. Steigman & I.T., 1998

Diemand and Kuhlen, 2008

Vogelsberger and White, 2010

- We employed cosmological N-Body code Gadget with the gravitational softening 0.2 kpc/h.
- "Milky Way"-like halo was selected from cosmological simulation of LSS.
- Cosmological parameters

 $\Omega_m=0.3,\,\Omega_\Lambda=0.7,\,h=0.7$ and $\sigma_8=0.9.$

- Selected halo:
 - suffered its last major merger at z > 2.
 - has rotation velocity similar to MW.
 - was resolved by 10^7 particles within virial radius.
 - total mass of the halo withing this radius was $M_{vir} = 2.3 imes 10^{12} \; M_{\odot}/h.$

Dolag, Dolgov & I.T., 2013

Phase-space after averaging over all angles in conguration space

Dolag, Dolgov & I.T., 2013

Phase-space after averaging over solid angle with opening $heta=40^\circ$.

Dolag, Dolgov & I.T., 2013

Velocity distribution at r=150 kpc. Averages are for $\Delta r=2$ kpc and solid angles with openings $\theta=40^\circ$ (solid line) and $\theta=20^\circ$ (dotted line).

Dolag, Dolgov & I.T., 2013

Phase-space after averaging over solid angle with opening $\theta = 40^{\circ}$. However, now $|\vec{v}| \cdot \mathrm{sign}(v_r)$ insted of v_r is used.

Dolag, Dolgov & I.T., 2013

- Infall picture do captures main features of the phase space of Dark Matter for a galaxy like the Milky Way.
- Extensive and dedicated simulations are needed to very the extent of its validity