Observational constraints on the types of cosmic strings

Sternberg State Astronomical Institute of Lomonosov Moscow State University and University of Naples Federico II, Naples, Italy

> Sazhina O.S. Scognamiglio D. Sazhin M.V.

QUARKS – 2014 18th International Seminar on High Energy Physics Suzdal, Russia 2-8 June, 2014

Outline

- Cosmic string in cosmology and methods of its detection
- String traces in CMBR data: theory
- Contribution of cosmic strings' energy into total energy of the Universe (WMAP, Planck): observations
- Solitary string and <u>modified Haar step function</u>: *effective method to search*
- WMAP and Planck data analysis: cosmic string candidates
- which type and how many?

Cosmic string basis

$$L = D^{\mu}\phi^{*}D_{\mu}\phi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \lambda\left(\phi^{*}\phi - \frac{\eta^{2}}{2}\right)^{2}$$

$$|\langle\phi\rangle|^{2} = \frac{\eta^{2}}{2}$$

$$\langle\phi\rangle = \frac{\eta}{\sqrt{2}}\exp\left\{i\alpha(x)\right\}$$

$$\mu \sim \eta^{2}$$

$$V(\phi)$$

$$\psi(\phi)$$

$$\psi(\phi$$

Cosmic string in the Universe

Modern methods of cosmic string detection

Optical surveys

Looking for gravitational lensing events

Radio surveys

The investigations of the structure of CMBR anisotropy in WMAP and Planck data

- Gravitational radiation from string loops
- Interaction of string and black hole
- Decay of heavy particles emitted by string
- String + string interaction

The surface of last scattering

CMBR anisotropy induced by a cosmic string

The Kaiser-Stebbins effect

Moving string produces red or blue shifts of photon frequency

The simple simulation of a straight cosmic string moving with constant velocity

CMBR anisotropy induced by straight moving cosmic string. Simulations

- OS distance from observer to straight cosmic string,
- v string velocity;
- ψ string motion direction

Amplitude of cosmic string anisotropy $\frac{\delta T}{T} \approx 8\pi G \mu \gamma \frac{v}{c}$

 $\delta T = 27 \ \mu \text{K} \cdot \frac{\Delta \theta}{2''} \frac{v}{0.9} F(\psi, \varphi, \theta)_{\text{WMAP7 CMBR map}}$

sky temperature of straight cosmic string

 $\delta T \approx 100 \ \mu K$

What strings are "observable"?

The upper bound on string deficit angle. The induced anisotropy (*amplitude of spot*) is compared with anisotropy due adiabatic fluctuations and could be detected.

 $\Delta \theta = 6'' \implies \delta T \approx 81 \,\mu K$

The low observational limit due the available resolution (*HST*) in optical searching of gravitational lensing events of galaxies by cosmic strings. "Superlight" strings could exist but can not be detected.

What WMAP and Planck tell us about cosmic strings?

Cosmic string network model	Data	Cosmic string tension (upper bound) $\left(\frac{G\mu}{c^2}\right)_{\text{network}} \cdot 10^{-7}$
Nambu-Goto	Planck + WP	1.5
Abelian-Higgs field theory	Planck + WP	3.2
Abelian-Higgs mimic	Planck + WP	3.6
Semilocal cosmic string	Planck + WP	11.0
Global texture	Planck + WP	10.6

Planck data analysis

Modified Haar functions with cyclic shift $\{\psi_{ni}\}$ [0,1] $a \in [0,1/2]$ $\begin{bmatrix} 0 < a < 1-i/2^n \\ 1-i/2^n < a < 1-i/2^n + 1/2^{n+1} \\ 1-i/2^n + 1/2^{n+1} < a < 1-i/2^n + 1/2^n \\ 1-(i-1)/2^n < a < 1/2 \end{bmatrix}$

Planck original 100GHz map (units [K])

...we have six independent Planck maps, from 100GHz to 857GHz

Planck low-frequency synchrotron map

*o*synchrotron filter

Planck 100GHz filtered map (units [K])

Planck low-frequency dust map

Planck 100GHz filtered map (using both dust and synchrotron filters; units [K])

WMAP free-free K-map

1σ WMAP free-free K-map

Planck 100GHz filtered map (using both dust and synchrotron filters + free-free WMAP7 filter; units [K])

Planck 100GHz filtered map (using both dust and synchrotron filters + free-free WMAP7 filter + marg.correction; units [K])

Planck mask to extract Galaxy (70% sky coverage)

...recommended by Planck collaboration. There is also 90%, 97%, and 99% sky coverage

Planck point source mask (100GHz, 50)

Planck 100GHz filtered map (units [K])

3σ

Preliminary locations of string candidates. WMAP ILC CMBR map after *Haar* analysis

Preliminary locations of string candidates. **PLANCK** filtered CMBR map after *Haar* analysis

 2σ

Preliminary locations of string candidates. **PLANCK** filtered CMBR map after *Haar* analysis

Preliminary locations of string candidates. **PLANCK** filtered CMBR map after *Haar* analysis

The upper limit on cosmic string anisotropy "jump"

 $\delta T\approx 40~\mu K$

^{2″.8}

We consider a detection to be positive if we find:

- 1) a continuous line;
- at least three correlated vector of temperature gradients;
- 3) it remains in all bands.

 $\delta T \approx 38.2 \ \mu K$ 2".8

 There are neither Nambu-Goto nor Abelian-Higgs cosmic strings (under simple assumption of homogeneous distribution of cosmic strings).

