UV-completing Ghost Inflation

Mikhail Ivanov (MSU and INR RAS, Moscow)

in collaboration with Sergey Sibiryakov JCAP 05(2014)045 [arXiv:1402.4964] Nov

November 17, 2010

Galaxies, clusters etc. arose from quantum fluctuations amplified during Inflation

Inflation is a probe of the highest accessible energies (through cosmological observations)

Different space-time symmetries:

Different space-time symmetries:

e.g. supersymmetry

(c) L. da Vinci

(c) L. da Vinci

At such energies effects of new physics may show up!

Different space-time symmetries:

e.g. supersymmetry

Reduced
 e.g. broken
 Lorentz Invariance

(c) P. Picasso

Blas, Pujolas, Sibiryakov

Gravity Lagrangian:

 $\mathcal{L}_{GR} + \mathcal{L}_u$

$$\mathcal{L}_u \sim M^2_* ~ (
abla u_\mu)^2$$

EFT up to M_{st}

Above can be embedded into Horava-Lifshitz gravity (only khronometric)

Inflaton with LV coupling

 $\mathcal{L}_I = \frac{1}{2} (\partial_\nu \theta)^2 - V(\theta) + \frac{\varkappa}{2} (u^\nu \partial_\nu \theta)^2 - \mu^2 u^\nu \partial_\nu \theta$

Inflaton with LV coupling $\mathcal{L}_{I} = \frac{1}{2} \mathcal{L}_{P} \mathcal{D}_{P} \mathcal{D}_{2}^{2} (\partial_{\nu} \mathcal{U} \mathcal{D}) \mathcal{D}_{2}^{2} (\partial_{\nu} \mathcal{U} \mathcal{D}) \mathcal{D}_{2}^{2} \mathcal{D}_{2}^{\nu} \partial_{\nu} \mathcal{D}_{2}^{2} \mathcal{D}_{2}^{\nu} \partial_{\mu} \mathcal{D}_{2}^{\nu} \partial_{\nu} \partial_{\nu}$

 $3\mu^2 H$

 θ

Inflaton with LV coupling

Inflaton with LV coupling

• tensors: standard

$$k > k_c$$
$$k < k_c$$

 $\omega \propto k$ $\omega^2 = \delta^2 k^2 + k^4 /$

$$\delta^2 \sim -\frac{\dot{H}}{3H^2} \qquad k_c \sim \frac{1}{2}$$

- tensors: standard
- vectors: absent or gapped

 $\omega \propto k k$

 $k \gg k k_{cc}$ $k \ll k k_{cc}$

 $\delta \delta \sim \frac{\dot{H}\dot{H}}{3H^2} \qquad k_c k_c \sim \frac{\mu^2}{M_*}$

 $\omega \mathcal{U} \stackrel{2}{=} = \delta^2 \partial \mathcal{U} \stackrel{2}{+} \frac{1}{k} \frac{4}{k} \frac{4}{k}$

- tensors: standard
- vectors: absent or gapped
- scalars: $k>k_c$: two modes with linear dispersion $\omega\propto k$ k

 $k < k_c$: a single gappless d.o.f. $\omega^2 = \frac{\delta^2 k^2 + k^4}{k_c^2} k_c^2$

 δ^2

same as in (tilted) ghost inflation Arkani-Hamed et.al.; Senatore

 $\sim -\frac{\dot{H}}{3H^2}$

 $k_c \sim \frac{\mu^2}{M} =$

Relation with Ghost InflationGI (Arkani-Hamed et al. & Senatore):I) EFT for perturbations onlycutoff k_c

GI (Arkani-Hamed et al. & Senatore):
I) EFT for perturbations only cutoff k_c
+) a very general approach

-) unable to capture the background evolution: problems with the end of inflation and reheating

L. Glashow

A. Salam

S.Weinberg

(UV-completing Fermi theory - Nobel prize'79)

GI (Arkani-Hamed et al. & Senatore): I) EFT for perturbations only cutoff k_c

Our model: I) EFT for both perturbations and background cutoff M_*

GI (Arkani-Hamed et al. & Senatore): I) EFT for perturbations only cutoff k_c

Our model: I) EFT for both perturbations and background cutoff M_*

- GI (Arkani-Hamed et al. & Senatore):
- I) EFT for perturbations only cutoff k_c
- 2) Unusual shape of non-Gaussianity

Our model:

- I) EFT for both perturbations and background cutoff M_*
- 2) The same shape of non-Gaussianity

- GI (Arkani-Hamed et al. & Senatore):
- I) EFT for perturbations only cutoff k_c
- 2) Unusual shape of non-Gaussianity

Our model:

- I) EFT for both perturbations and background $cutoff M_*$
- 2) The same shape of non-Gaussianity
- 3) May be totally UV-completed within Horava-Lifshitz-gravity

$$\omega^2 = \delta^2 k^2 + k^4 / k_c^2$$

$$\omega^2 = \delta^2 k^2 \delta^2 k^2 + \frac{k^4}{k^4} k_c^2 k_c^2$$

 $\delta^2 \gg H/k_c \sim M_*/M_p$

$$n_s - 1 = -6\delta^2 - \frac{3\dot{\delta}}{H\delta}$$

 $r = 48\,\delta^3$

$$\omega^2 = \delta^2 k^2 \delta^2 k^2 + \frac{k^4}{k^2} k_c^2 k_c^2$$

 $\delta^2 \gg H/k_c \sim M_*/M_p$

$$n_{s}^{n} - 1^{1} = -6\delta^{2} - \frac{3\delta}{MH}$$

$$r = 48 \,\overline{\delta^3} \, 48\delta^3$$

$$\omega^2 = \delta^2 k^2 \delta^2 k^2 + \frac{k^4}{k^2} k_c^2 k_c^2$$

 $\delta^2 \gg H/k_c \sim M_*/M_p$

$$n_{s}^{n_{s}} - 1^{1} = -6\delta^{2} - \frac{3\delta}{4H}$$

$$r = 48 \,\overline{\delta^3} \, 48\delta^3$$

Planck data on the scalar tilt: $r \sim 0.02$

Disfavored by BICEP

$$\omega^{2} = \delta^{2} k^{2} \delta^{4} k^{4} / k^{2} \delta^{4} k^{4} / k^{2} k^{2} k^{2} k^{2} \delta^{4} k^{4} / k^{2} k^{2$$

$$> H\delta k > HM _{*}/M _{p} / M _{p} / M _{p}$$

$$s - 1 = \frac{n_s}{\delta} = \frac{1}{6\delta} = \frac{3\delta}{H\delta}^2 = \frac{3\delta}{MH}$$

$$= \frac{r_s}{\delta} = \frac{48\delta^3}{\delta^3}$$

Planck data on the scalar tilt:

$$r \sim 0.02$$

 $r \sim 0.03$ Disfavored by BICEP $\delta^2 \ll H/k_c \sim M_*/M_p$

$$n_s - 1 = -6\delta^2$$

 $r = 13(M_*/M_p)^{3/2}$

$$\omega^{2} = \delta^{2} k^{2} \delta^{4} k^{4} / k^{2} \delta^{4} k^{4} / k^{2} k^{2$$

$$> H\delta k > HM _{*}/M _{p} / M_{p} / M_{p}$$

$$s - 1 = \frac{n_s}{\delta} = \frac{1}{6\delta} = \frac{3\delta}{H\delta} = \frac{3\delta}{H\delta}$$

$$= \frac{r_s}{\delta} = \frac{1}{\delta} = \frac{-6\delta^2}{H\delta} = \frac{3\delta}{H\delta}$$

$$= \frac{r_s}{H\delta} = \frac{1}{\delta} = \frac{-6\delta^2}{H\delta} = \frac{3\delta}{H\delta}$$

$$= \frac{r_s}{\delta} = \frac{1}{\delta} =$$

 $r \sim 0.03$ Disfavored by BICEP

$$\delta^2 \ll H/k_c \sim M_*/M_p$$

$$n_{s} - 1 = -6\delta^{2}$$

$$n_{s} - 1 = -6\delta^{2}$$

$$r = 13(M_{*}/M_{p})^{3/2}$$

$$r = 13(M_{*}/M_{p})^{3/2}$$

 $\delta^2 k^4 / 1$ $\omega^2 = \delta^2 k^2$ $\frac{4}{k^4}/k_c^2$

 $r_{s} = \frac{n_{s}}{6\delta^{2}} - \frac{3\delta}{H\delta}^{2}$ $-1 = \frac{n_{s}}{6\delta^{2}} - \frac{3\delta}{H\delta}^{2} - \frac{3\delta}{H}^{2}$ $= \frac{r_{s}}{6\delta^{3}} - \frac{48\delta^{3}}{\delta^{3}}$ Planck data on the scalar tilt: $r \sim 0.02$

 $^{r}\sim 0.03$ Disfavored by BICEP

 $\delta^2 \ll H/k_c \sim M_*/M_p$

 $n_s - 1 = -6\delta^2$ $n_s - 1 = -6\delta^2$ $r = 13(M_*/M_p)^{3/2}$ $r = 13(M_*/M_p)^{3/2}$ BICEP data: $r \sim 0.2$

 $M_*/M_p \sim 0.05$

 $(x_2, x_3)_{j_2}^2 x_3^2$ for the cases of quadratic (left (left

cf. $f_{NL} = -23 \pm 88$ Planck

Conclusions:

Lorentz breaking in the inflaton sector: Fast-roll inflation even without any potential

> Perturbations = Ghost Inflation, UV-completion up the Planck scale

Prediction for non-Gaussianity: equilateral type $f_{NL} \sim -5$

Potentially accessible for future missions !

Outlook:

Higher statistics (trispectrum related to bispectrum)

UV - completing LV massive gravity (Dubovsky'04)

Thank you for your attention!

Different space-time symmetries:

Enhanced e.g. supersymmetry

sea hedgehogs

Echinoderm

sea star

Different space-time symmetries:

Enhanced e.g. supersymmetry

Reduced
 e.g. broken
 Lorentz Invariance

