SUPERSYMMETRIC SYSTEMS WITH BENIGN GHOSTS

Suzdal, June 42014

based on
D. Robert + A.S., JMP, 49:042014 (2008)
and
A.S., arXiv:1306.6066 [hep-th]

MOTIVATION:

Problems with causality in quantum and classical gravity.

> Dream solution:
> $[$ A.S., 2005]

- our Universe as a soap film in a flat higher dimensional bulk. The TOE is a field theory in this bulk.
- To be renormalizable, it should involve higher derivatives

DANGER: the ghosts

- GHOSTS $=$ instability (rather absence) of vacuum
- inherent for higher-derivative theories.

Conventional system

$$
E=\frac{\dot{q}^{2}}{2}+V(q)
$$

can have a classical and/or quantum bottom

- Consider the Pais-Uhlenbeck oscillator.

$$
L=\frac{1}{2}\left(\ddot{q}+\Omega^{2} q\right)^{2} .
$$

Then

$$
E=\ddot{q}\left(\ddot{q}+\Omega^{2} q\right)-\dot{q}\left(q^{(3)}+\Omega^{2} \dot{q}\right)-\frac{1}{2}\left(\ddot{q}+\Omega^{2} q\right)^{2}
$$

can be as negative as one wishes.

- Common lore: negative residues in propagators break unitarity.

NOT TRUE!!

- No problem in free theories
- Interactions may lead to collapse and breaking of unitarity. Like falling into the center in the attractive potential $\sim 1 / r^{2}$.
- If quantum theory is sick, so is its classical counterpart. If classical theory is benign, so is its quantum counterpart
- Adding simple-minded nonlinear terms $\sim q^{4}$ or $\sim q^{2} \dot{q}^{2}$ to the Pais-Uhlenbeck Lagrangian does lead to collapse.
- Islands of stability

Benign nonlinear SQM system with ghosts
[D. Robert + A.S., 2006]

$$
S=\int d t d x d \bar{\theta} d \theta\left[\frac{i}{2} \overline{\mathcal{D}} \Phi \frac{d}{d t} \mathcal{D} \Phi+V(\Phi)\right],
$$

with the real $(0+1)$-dimensional superfield

$$
\Phi=\phi+\theta \bar{\psi}+\psi \bar{\theta}+D \theta \bar{\theta}
$$

- An extra time derivative.

The Hamiltonian

$$
H=p P-D V^{\prime}(\phi)+\text { fermion term }
$$

is not positive definite.
Integrals of motion:

1. $E \equiv H$
2. $N=\frac{1}{2} \dot{\phi}^{2}-V(\phi)$

- Exactly solvable.
- Take

$$
V(\Phi)=-\frac{\omega^{2} \Phi^{2}}{2}-\frac{\lambda \Phi^{4}}{4}
$$

- Explicit solutions

$$
\phi(t)=\phi_{0} \mathrm{cn}[\Omega t \mid m]
$$

with

$$
\begin{gathered}
\alpha=\frac{\omega^{4}}{\lambda N}, \quad \Omega=[\lambda N(4+\alpha)]^{1 / 4}, \quad m=\frac{1}{2}\left[1-\sqrt{\frac{\alpha}{4+\alpha}}\right] \\
\phi_{0}=\left(\frac{N}{\lambda}\right)^{1 / 4} \sqrt{\sqrt{4+\alpha}-\sqrt{\alpha}} \\
D(t) \propto \dot{\phi}(t) \int^{t} \frac{d t^{\prime}}{\dot{\phi}^{2}\left(t^{\prime}\right)}
\end{gathered}
$$

- $\phi(t)$ is bounded.
- $D(t)$ grows linearly.

$$
D(t)
$$

Quantum problem

- is also exactly solvable.
- If $\lambda=0$, one can define $\left\{x_{ \pm}, p_{ \pm}\right\}$such that

$$
H_{B}=\frac{p_{+}^{2}+\omega^{2} x_{+}^{2}}{2}-\frac{p_{-}^{2}+\omega^{2} x_{-}^{2}}{2} .
$$

with $E_{n_{+}, n_{-}}=\omega\left(n_{+}-n_{-}\right)$.

- Infinite degeneracy at each level.

In interacting case:

- Still an infinity of zero energy states
- Other states form a continuous spectrum, $E_{\text {cont }} \in[-\infty,-\omega] \cup[\omega, \infty]$.
- Explicit expressions for wave functions exist.
- Evolution operator is unitary.

UNUSUAL ALGEBRAIC STRUCTURES

full canonical Hamiltonian

$$
H=p P-D V^{\prime}(x)+\bar{\psi} \bar{\chi}-V^{\prime \prime}(x) \chi \psi .
$$

is not Hermitian

- reality of spectrum \longrightarrow crypto-Hermiticity!

Supercharges

$$
\begin{aligned}
& Q=\psi\left[p+i V^{\prime}(x)\right]-\bar{\chi}(P-i D), \\
& \bar{Q}=\bar{\psi}(P+i D)-\chi\left[p-i V^{\prime}(x)\right] .
\end{aligned}
$$

and the extra pair

$$
\begin{aligned}
T & =\psi\left[p-i V^{\prime}(x)\right]+\bar{\chi}(P+i D), \\
\bar{T} & =\bar{\psi}(P-i D)+\chi\left[n+i V^{\prime}(x)\right]
\end{aligned}
$$

Mixed model

$L=\int d \bar{\theta} \theta \theta\left[\frac{i}{2}(\overline{\mathcal{D}} X) \frac{d}{d t}(\mathcal{D} X)+\frac{\gamma}{2} \overline{\mathcal{D}} X \mathcal{D} X+V(X)\right]$.
Physics is similar to the model with $\gamma=0$, but

- not integrable anymore
- No linear growth for $D(t)$

Figure 1: The function $D(t)$ for a deformed system ($\omega=0, \lambda=1, \gamma=.1$).
algebra is deformed

- Let $H=H_{0}-\gamma F / 2$ and

$$
F=\psi \bar{\psi}-\chi \bar{\chi}, \quad F_{+}=\bar{\chi} \psi, \quad F_{-}=\bar{\psi} \chi
$$

then

$$
\begin{array}{r}
{\left[F_{ \pm}, F\right]=\mp 2 F_{ \pm}, \quad\left[F_{+}, F_{-}\right]=F,} \\
{\left[Q, H_{0}=-\frac{\gamma}{2} Q,\left[\bar{Q}, H_{0}\right]=\frac{\gamma}{2} \bar{Q},\right.} \\
{\left[T, H_{0}\right]=\frac{\gamma}{2} T,\left[\bar{T}, H_{0}\right]=-\frac{\gamma}{2} \bar{T},} \\
{[Q, F]=-Q, \quad[\bar{Q}, F]=\bar{Q},} \\
{[T, F]=T, \quad[\bar{T}, F]=-\bar{T},} \\
{\left[Q, F_{-}\right]=\bar{T},\left[\bar{Q}, F_{+}\right]=-T,} \\
{\left[T, F_{-}\right]=-\bar{Q},\left[\bar{T}, F_{+}\right]=Q,} \\
\{Q, \bar{Q}\}=2 H_{0}-\gamma F, \quad\{T, \bar{T}\}=2 H_{0}+\gamma F,
\end{array}
$$

Spectrum

In noninteracting case $(\lambda=0)$,
$E_{n_{+}, n_{-}}=\omega_{+} n_{+}-\omega_{-} n_{-}$ with

$$
\omega_{ \pm}=\frac{\gamma}{2}\left(\sqrt{1+\tau^{2}} \mp 1\right) \quad, \tau=\frac{2 \omega}{\gamma} .
$$

- The same as for the Pais-Uhlenbeck oscillator,

$$
L=\frac{1}{2}\left(\ddot{q}^{2}-\left(\omega_{+}^{2}+\omega_{-}^{2}\right) \dot{q}^{2}+\omega_{+}^{2} \omega_{-}^{2} q^{2}\right)
$$

- pure point, dense everywhere
- similarly - in the interacting case.

(1+1) FIELD THEORY.

- Let Φ depend on t and x. Choose

$$
S=\int d t d x d \bar{\theta} d \theta\left[-2 i \mathcal{D} \Phi \partial_{+} \mathcal{D} \Phi+V(\Phi)\right]
$$

where $\partial_{ \pm}=\left(\partial_{t} \pm \partial_{x}\right) / 2$ and

$$
\mathcal{D}=\frac{\partial}{\partial \theta}+i \theta \partial_{-}, \quad \overline{\mathcal{D}}=\frac{\partial}{\partial \bar{\theta}}-i \bar{\theta} \partial_{+}
$$

Bosonic Lagrangian

$$
\mathcal{L}_{B}=\partial_{\mu} \phi \partial_{\mu} D+D V^{\prime}(\phi)
$$

Equations of motion

$$
\square \phi+\omega^{2} \phi+\lambda \phi^{3}=0
$$

$$
\square D+D\left(\omega^{2}+3 \lambda \phi^{2}\right)=0
$$

Two integrals of motion:

$$
E=\int d x\left[\dot{\phi} \dot{D}+\phi^{\prime} D^{\prime}+D \phi\left(\omega^{2}+\lambda \phi^{2}\right)\right]
$$

(positive or negative)

$$
N=\int d x\left[\frac{1}{2}\left(\dot{\phi}^{2}+\left(\phi^{\prime}\right)^{2}\right)+\frac{\omega^{2} \phi^{2}}{2}+\frac{\lambda \phi^{4}}{4}\right]
$$

(positive definite)

- Stochasticity. Solved numerically.

Initial conditions

$$
\begin{aligned}
\phi(x, t=0) & =C e^{-x^{2}}, \quad \text { with } \quad C=1,3,5 \\
D(x, t=0) & =\cos \pi x / L
\end{aligned}
$$

$(L=10-$ length of the box $)$

(a) $C=1$

(b) $C=3$

(c) $C=5$

Figure 2: Dispersion $d=\sqrt{\left\langle D^{2}\right\rangle_{x}}$ as a function of time for different values of C.

IMPLICATIONS FOR INFLATION ?

- Homogeneous classical field needed.
- Let $\phi(t)$ be homogeneous. Then different Fourier modes of $D(x, t)$ decouple.

ONLY ZERO MODE GROWS!

- $D(x, t)$ becomes more and more homogeneous.

