# BFKL Pomeron at Strong Coupling from the Quantum Spectral Curve of $\mathrm{N}=4$ SYM 

Fedor Levkovich-Maslyuk King's College London

Based on arXiv:1402.0871
(N. Gromov, F. L.-M., G. Sizov, S. Valatka)


## AdS/CFT duality

$\mathcal{N}=4$ Yang-Mills theory in four dimensions (planar limit)

superstring theory in
$A d S_{5} \times S^{5}$


Operator conformal dimensions $\Delta_{i}$

spectrum of string energies $E_{i}$

The problem we study: finding the spectrum

## Hope for exact solution of both theories! Key tool: integrability

## Motivation

- Understand gauge theory at strong coupling
- Similarities between $\mathrm{N}=4 \mathrm{SYM}$ and QCD (BFKL, ....)
- Explore quantum strings, AdS/CFT


## N=4 Supersymmetric Yang-Mills (SYM)

$$
S=\frac{1}{g_{Y M}^{2}} \int d^{4} x \operatorname{tr}\left\{\frac{1}{2} F_{\mu \nu}^{2}+\left(D_{\mu} \Phi_{i}\right)^{2}-\frac{1}{2}\left[\Phi_{i}, \Phi_{j}\right]^{2}+\text { fermions }\right\}
$$

$A_{\mu}, \Phi_{i}, \psi_{j}$ in adjoint of $S U\left(N_{c}\right)$
Planar limit: $N_{c} \rightarrow \infty, \lambda=g_{Y M}^{2} N_{c}$ is fixed - 't Hooft coupling

Theory is conformal


$$
\left\langle\mathcal{O}_{i}(x) \mathcal{O}_{j}(y)\right\rangle=\frac{\mathrm{const}}{|x-y|^{\Delta_{i}+\Delta_{j}}}
$$

$\mathcal{O}(x)=\operatorname{Tr}\left(\Phi_{1} \Phi_{2} \Phi_{1} \Phi_{1} \Phi_{2} \ldots \Phi_{1} \Phi_{2} \Phi_{2}\right)(x)+$ permutations

$$
\Delta_{i}=\Delta_{i}(\lambda)
$$

At 1 loop - eigenvalues of integrable XXX spin chain!


## String theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

$S=\frac{\sqrt{\lambda}}{4 \pi} \int \partial_{\mu} \vec{X} \cdot \partial^{\mu} \vec{X} d \sigma d \tau+$ fermions

Coset sigma model $\frac{\operatorname{PSU}(2,2 \mid 4)}{\mathrm{Sp}(2,2) \times \operatorname{Sp}(4)}$
Infinitely many integrals of motion! Encoded in monodromy matrix.


$$
\begin{gathered}
\Omega(u, \tau)=P \exp \oint_{\gamma} \mathcal{A}(u, \tau, \sigma) \\
\partial_{\tau} \operatorname{Tr} \Omega(u, \tau)=0 \\
\text { on E.O.M. }
\end{gathered}
$$

## Classical spectral curve

$$
\Omega(u) \rightarrow\left\{e^{i q_{1}(u)}, e^{i q_{2}(u)}, e^{i q_{3}(u)}, e^{i q_{4}(u)}, e^{i q_{5}(u)}, e^{i q_{6}(u)}, e^{i q_{7}(u)}, e^{i q_{8}(u)}\right\}
$$

Eigenvalues are integrals of motion, they define an 8 -sheet algebraic curve

$$
\operatorname{det}(\Omega(u)-z)=0
$$

Branch cuts in the quasimomenta $q_{i}(u)$ connect sheets


## Quantum integrability

String sigma model = integrable 2d QFT in finite volume $L$ $L=$ \# of fields in gauge theory operator

Exact $S$ matrix

Asymptotic Bethe ansatz for energy levels at large $L$


Thermodynamic Bethe ansatz (TBA) infinite set of nonlinear integral equations.

Gromov, Kazakov, Kozak, Vieira 2009 Arutyunov, Frolov 2009
Bombardelli, Fiorovanti, Tateo 2009

Gives spectrum at any $L$ and any coupling!

But very complicated.

## TBA equations

$$
\begin{aligned}
& \log \frac{Y_{1,1}}{\mathbf{Y}_{1,1}}= K_{m-1} * \log \frac{1+\bar{Y}_{1, m}}{1+\overline{\mathbf{Y}}_{1, m}} \frac{1+\mathbf{Y}_{m, 1}}{1+Y_{m, 1}}+\mathcal{R}_{1 a}^{(01)} * \log \left(1+Y_{a, 0}\right) \\
& \log \frac{\bar{Y}_{2,2}}{\overline{\mathbf{Y}}_{2,2}}= K_{m-1} * \log \frac{1+\bar{Y}_{1, m}}{1+\overline{\mathbf{Y}}_{1, m}} \frac{1+\mathbf{Y}_{m, 1}}{1+Y_{m, 1}}+\mathcal{B}_{1 a}^{(01)} * \log \left(1+Y_{a, 0}\right) \\
& \log \frac{\bar{Y}_{1, s}}{\overline{\mathbf{Y}}_{1, s}}=-K_{s-1, t-1} * \log \frac{1+\bar{Y}_{1, t}}{1+\overline{\mathbf{Y}}_{1, t}}-K_{s-1} \hat{*} \log \frac{1+Y_{1,1}}{1+\bar{Y}_{2,2}} \\
& \log \frac{Y_{a, 1}}{\mathbf{Y}_{a, 1}}=-K_{a-1, b-1} * \log \frac{1+Y_{b, 1}}{1+\mathbf{Y}_{b, 1}}-K_{a-1} \hat{*} \log \frac{1+Y_{1,1}}{1+\bar{Y}_{2,2}} \\
& \quad+\left[\mathcal{R}_{a b}^{(01)}+\mathcal{B}_{a-2, b}^{(01)}\right] * \log \left(1+Y_{b, 0}\right) \\
& \log \frac{Y_{a, 0}}{\mathbf{Y}_{a, 0}=} {\left[2 \mathcal{S}_{a b}-\mathcal{R}_{a b}^{(11)}+\mathcal{B}_{a b}^{(11)}\right] * \log \left(1+Y_{b, 0}\right)+2\left[\mathcal{R}_{a b}^{(10)}+\mathcal{B}_{a, b-2}^{(10)}\right] * \operatorname{sym} \log \frac{1+Y_{b, 1}}{1+\mathbf{Y}_{b, 1}} } \\
&+2 \mathcal{R}_{a 1}^{(10)}{ }_{\text {sym }} \log \frac{1+Y_{1,1}}{1+\mathbf{Y}_{1,1}}-2 \mathcal{B}_{a 1}^{(10)} \hat{\mathrm{sym}} \log \frac{1+\bar{Y}_{2,2}}{1+\overline{\mathbf{Y}}_{2,2}}
\end{aligned}
$$

## Can this be the final solution to the spectral problem in $\mathrm{N}=4 \mathrm{SYM}$ ?!

## Y-functions and analyticity



TBA
Simple functional eqns (Y-system, T-system, Hirota)

## Gromov, Kazakov, Vieira 2009


$g=\frac{\sqrt{\lambda}}{4 \pi}$
Solution is known, but need to ensure correct analytical properties

## The $\mathrm{P} \mu$ system

## Thermodynamic Bethe Ansatz

$\log \frac{Y_{1,1}}{\mathbf{Y}_{1,1}}=K_{m-1} * \log \frac{1+\bar{Y}_{1, m}}{1+\overline{\mathrm{Y}}_{1, m}} \frac{1+\mathbf{Y}_{m, 1}}{1+Y_{m, 1}}+\mathcal{R}_{1 a}^{(01)} * \log \left(1+Y_{a, 0}\right)$
$\log \frac{\bar{Y}_{2,2}}{\overline{\mathrm{Y}}_{2,2}}=K_{m-1} * \log \frac{1+\bar{Y}_{1, m}}{1+\overline{\mathrm{Y}}_{1, m}} \frac{1+\mathbf{Y}_{m, 1}}{1+Y_{m, 1}}+\mathcal{B}_{1 a}^{(01)} * \log \left(1+Y_{a, 0}\right)$
$\log \frac{\bar{Y}_{1, s}}{\overline{\mathrm{Y}}_{1, s}}=-K_{s-1, t-1} * \log \frac{1+\bar{Y}_{1, t}}{1+\bar{Y}_{1, t}}-K_{s-1} \hat{*} \log \frac{1+Y_{1,1}}{1+\bar{Y}_{2,2}}$
$\log \frac{Y_{a, 1}}{\mathbf{Y}_{a, 1}}=-K_{a-1, b-1} * \log \frac{1+Y_{b, 1}}{1+\mathbf{Y}_{b, 1}}-K_{a-1} \hat{*} \log \frac{1+Y_{1,1}}{1+\bar{Y}_{2,2}}$
$+\left[\mathcal{R}_{a b}^{(01)}+\mathcal{B}_{a-2, b}^{(01)}\right] * \log \left(1+Y_{b, 0}\right)$
$\log \frac{Y_{a, 0}}{\mathbf{Y}_{a, 0}}=\left[2 \mathcal{S}_{a b}-\mathcal{R}_{a b}^{(11)}+\mathcal{B}_{a b}^{(11)}\right] * \log \left(1+Y_{b, 0}\right)+2\left[\mathcal{R}_{a b}^{(10)}+\mathcal{B}_{a, b-2}^{(10)}\right]_{\operatorname{sym}}^{*} \log \frac{1+Y_{b, 1}}{1+\mathbf{Y}_{b, 1}}$


## P $\mu$ system

Riemann-Hilbert problem for $4+5$ functions with simple analytical properties
simplification

Gromov, Kazakov,Leurent, Volin 2013

## P $\mu$-system/Quantum Spectral Curve

TBA equations reduced to only $4+5$ functions $a, b=1, \ldots, 4$


Branchpoints are quadratic

$$
\mu_{a b}(u)=-\mu_{b a}(u)
$$



$$
\mu_{12} \mu_{34}-\mu_{13} \mu_{24}+\mu_{14}^{2}=1 \mu_{14}=\mu_{23}
$$

Analytic continuation around branchpoint

$$
\tilde{\mathbf{P}}_{a}=-\mu_{a b} \chi^{b c} \mathbf{P}_{c}
$$



$$
\begin{aligned}
\tilde{\mu}_{a, b} & =\mu_{a, b}+\mathbf{P}_{a} \tilde{\mathbf{P}}_{b}-\mathbf{P}_{b} \tilde{\mathbf{P}}_{a} \\
\tilde{\mu}_{a, b} & =\mu_{a, b}(u+i)
\end{aligned}
$$

$$
\chi^{14}=-\chi^{23}=\chi^{32}=-\chi^{41}=1
$$

## The energy from $\mathrm{P} \mu$-system

Conserved charges are encoded in asymptotics
E.g. for twist operators $\operatorname{Tr}\left(Z D^{S} Z^{L-1}\right) \quad\left(\right.$ where $\left.Z=\Phi_{1}+i \Phi_{2}\right)$

$$
\begin{aligned}
& \mathbf{P}_{1} \simeq A_{1} u^{-L / 2} \\
& \mathbf{P}_{2} \simeq A_{2} u^{-L / 2-1} \\
& \mathbf{P}_{3} \simeq A_{3} u^{+L / 2} \\
& \mathbf{P}_{4} \simeq A_{4} u^{+L / 2-1}
\end{aligned}
$$

And anomalous dimension $\Delta$ is found from

$$
\begin{aligned}
& A_{2} A_{3}=\frac{\left.\left[(L-S+2)^{2}-\Delta^{2}\right]\left[(L+S)^{2}-\Delta^{2}\right)\right]}{16 i L(L+1)} \\
& A_{4} A_{1}=\frac{\left[(L+S-2)^{2}-\Delta^{2}\right]\left[(L-S)^{2}-\Delta^{2}\right]}{16 i L(L-1)}
\end{aligned}
$$

## Relation to classical spectral curve

In the classical limit

$$
P_{a}(u) \simeq e^{\int^{u}} q_{a}(v) d v
$$

Thus P-mu system may be viewed as a quantum version of the curve

Strongly reminds WKB wavefunction $\psi(x) \simeq e^{\int^{x} p(y) d y}$

We expect $P_{a}$ should be the exact Baxter Q-functions
= wavefunctions in separated variables

Gromov, Kazakov,Leurent, Volin 2013

## Application:

## small spin limit and pomeron intercept

## Twist operators at small spin

$$
\mathcal{O}=\operatorname{Tr}\left(Z D^{S} Z^{L-1}\right)
$$

For $\mathrm{S}=0$ this operator is protected (BPS)
We consider the peculiar limit when $S \rightarrow 0$

Gromov,

1. $\left\{\begin{array}{l}\tilde{\mathbf{P}}_{1}=-\mu_{1,2} \mathbf{P}_{3}+\mu_{1,3} \mathbf{P}_{2}-\mu_{1,4} \mathbf{P}_{1}, \\ \tilde{\mathbf{P}}_{2}=-\mu_{1,2} \mathbf{P}_{4}+\mu_{2,3} \mathbf{P}_{2}-\mu_{2,4} \mathbf{P}_{1}, \\ \tilde{\mathbf{P}}_{3}=-\mu_{1,3} \mathbf{P}_{4}+\mu_{2,3} \mathbf{P}_{3}-\mu_{3,4} \mathbf{P}_{1}, \\ \tilde{\mathbf{P}}_{4}=-\mu_{1,4} \mathbf{P}_{4}+\mu_{2,4} \mathbf{P}_{3}-\mu_{3,4} \mathbf{P}_{2} .\end{array}\right\rangle\left\{\begin{array}{l}\tilde{\mathbf{P}}_{1}=-\mathbf{P}_{3}+\mathbf{P}_{1}, \\ \tilde{\mathbf{P}}_{2}=-\mathbf{P}_{4}-\mathbf{P}_{2}-\mathbf{P}_{1} \sinh (2 \pi u), \\ \tilde{\mathbf{P}}_{3}= \\ \tilde{\mathbf{P}}_{4}= \\ -\mathbf{P}_{3}, \\ +\mathbf{P}_{4}+\mathbf{P}_{3} \sinh (2 \pi u) .\end{array}\right.$
2. $\tilde{\mu}_{a b}(u)=\mu_{a b}(u+i)$
3. $\tilde{\mu}_{a, b}=\mu_{a, b}+\mathbf{P}_{a} \widetilde{\mathbf{P}}_{b}-\mathbf{P}_{b} \widetilde{\mathbf{P}}_{a}$


Key simplification: all $\mathbf{P}_{a}$ are small $\square \mu_{a b}$ are trivial

Easy to solve in terms of

$$
x+\frac{1}{x}=\frac{u}{g}
$$

$$
\text { e.g. } \quad \mathbf{P}_{1}=C / x, \mathbf{P}_{3}=C x-C / x
$$

As a result we get
$\Delta=L+S \frac{4 \pi g I_{L+1}(4 \pi g)}{L I_{L}(4 \pi g)}+O\left(S^{2}\right)$

Matches result of [Basso 2011] !

## $S^{\wedge} 2$ order

P-mu system can be solved order by order in S

$$
\Delta=L+S \Delta^{(1)}(g)+S^{2} \Delta^{(2)}(g)+\ldots
$$

We computed the $S^{2}$ term at any coupling for $L=2,3,4$

$$
\begin{aligned}
\Delta_{L=2}^{(2)}= & \oint \frac{d u_{x}}{2 \pi i} \oint \frac{d u_{y}}{2 \pi i}\left[\frac{8 \pi^{3} I_{1}(\sqrt{\lambda})^{2}\left(x^{3}-\left(x^{2}+1\right) y\right)\left(2 \pi g I_{1}(\sqrt{\lambda})-I_{2}(\sqrt{\lambda})\right)}{I_{2}(\sqrt{\lambda})^{3}\left(x^{3}-x\right) y^{2}}\right. \\
& \left.+\ldots-\frac{4 \pi^{3}\left(\operatorname{sh}_{-}^{x}\right)^{2}\left(x^{2}+1\right) y^{2}}{I_{2}(\sqrt{\lambda})^{2}\left(x^{2}-1\right)}\right] \frac{1}{4 \pi i} \partial_{u} \log \frac{\Gamma\left(i u_{x}-i u_{y}+1\right)}{\Gamma\left(1-i u_{x}+i u_{y}\right)}
\end{aligned}
$$

At weak coupling - matches known predictions to 4 loops!

$$
\begin{aligned}
\gamma_{J=2}^{(2)} & =-8 g^{2} \zeta_{3}+g^{4}\left(140 \zeta_{5}-\frac{32 \pi^{2} \zeta_{3}}{3}\right)+g^{6}\left(200 \pi^{2} \zeta_{5}-2016 \zeta_{7}\right) \\
& +g^{8}\left(-\frac{16 \pi^{6} \zeta_{3}}{45}-\frac{88 \pi^{4} \zeta_{5}}{9}-\frac{9296 \pi^{2} \zeta_{7}}{3}+27720 \zeta_{9}\right)+\ldots
\end{aligned}
$$

## Konishi operator at strong coupling

Re-expansion of small S result

predictions for operators with finite $S$

Simplest unprotected operator, $\mathrm{L}=2, \mathrm{~S}=2$

$$
\mathcal{O}=\operatorname{Tr}\left(Z D^{2} Z\right)
$$

## $S(\Delta)$ for $L=2$



## BFKL pomeron intercept $j(\Delta) \equiv 2+S(\Delta)$

With our results we can compute the intercept $j(0)$ at strong coupling:

Costa,Goncalves,Penedones 2012
$j(0)=2+S(0)=2-\frac{2}{\lambda^{1 / 2}}-\frac{1}{\lambda}+\frac{1}{4 \lambda^{3 / 2}}+\left(6 \zeta_{3}+2\right) \frac{1}{\lambda^{2}}$
$+\left(18 \zeta_{3}+\frac{361}{64}\right) \frac{1}{\lambda^{5 / 2}}+\left(39 \zeta_{3}+\frac{447}{32}\right) \frac{1}{\lambda^{3}}+\mathcal{O}\left(\frac{1}{\lambda^{7 / 2}}\right)$


New result
[Gromov,F.L.-M.,Sizov, Valatka 2014]

## BFKL pomeron intercept



## Conclusions

- Quantum Spectral Curve/P $\mu$ system applied to study twist operators in $\mathrm{N}=4$ SYM
- $S^{2}$ term in conformal dimension found at any coupling
- Tested at weak and strong coupling
- New strong coupling prediction for Konishi operator
- Two new terms in BFKL intercept at strong coupling
- Other applications: quark-antiquark potential, ABJM theory
- Many future directions: exact wavefunctions and separated variables, correlators, BFKL, ...


## Asymptotic energy spectrum

 string sigma model = 2d QFT with finite spatial size $L$$$
L \rightarrow \infty
$$



Factorized scattering; quantization of momenta

$$
e^{i p_{i} L}=\prod_{j=1}^{M} S\left(p_{i}, p_{j}\right) \quad-\begin{gathered}
\text { Bethe ansatz } \\
\text { equations }
\end{gathered}
$$

$\Delta=\sum \epsilon\left(p_{j}\right)$

## All-loop asymptotic Bethe ansatz (ABA)

$$
\begin{aligned}
& \text { 母 } 1=\prod_{j=1}^{K_{2}} \frac{u_{1, k}-u_{2, j}+\frac{i}{2}}{u_{1, k}-u_{2, j}-\frac{i}{2}} \prod_{j=1}^{K_{1}} \frac{1-1 / x_{1, k} x_{4, j}^{+}}{1-1 / x_{1, k} x_{4, j}^{-}} \text {, } \\
& 1=\prod_{j \neq k}^{K_{2}} \frac{w_{2, k}-u_{2, j}-i}{u_{2, k}-u_{2, j}+i} \prod_{j=1}^{K_{3}} \frac{u_{2, k}=u_{3, j}+\frac{i}{2}}{u_{2, k}-u_{3, j}-\frac{i}{2}} \prod_{j=1}^{K_{1}} \frac{u_{2, k}=u_{1, j}+\frac{i}{2}}{u_{2, k}-u_{1, j}-\frac{i}{2}}, \\
& 1=\prod_{j=1}^{K_{2}} \frac{u_{3, k}-u_{2, j}+\frac{i}{2}}{u_{3, k}-u_{2, j}-\frac{i}{2}} \prod_{j=1}^{K_{3}} \frac{x_{3, k}-x_{4, j}^{+}}{x_{3, k}-x_{4, j}^{-}} \\
& 1=\left(\frac{x_{4, k}^{-}}{x_{4, k}^{+}}\right)^{L} \prod_{j+k}^{K_{4}} \frac{u_{4, k}-u_{4, j}+i}{u_{4, k}-u_{4, j}-i} \prod_{j}^{K_{4}}\left(\frac{1-1 / x_{4, k}^{+} x_{4, j}^{-}}{1-1 / x_{4, k}^{-} x_{4, j}^{+}}\right) \sigma^{2}\left(x_{4, k,} x_{4, j}\right) \\
& \times \prod_{j=1}^{K_{1}} \frac{1-1 / x_{4, k}^{-} x_{1, j}}{1-1 / x_{4, k}^{+} x_{1, j}} \prod_{j=1}^{K_{3}} \frac{x_{4, k}^{-}=x_{3, j}}{x_{4, k}^{+}=x_{3, j}} \prod_{j=1}^{K_{3}} \frac{x_{4, k}^{-}-x_{5, j}}{x_{4, k}^{+}=x_{5, j}} \prod_{j=1}^{K_{7}} \frac{1-1 / x_{4, k}^{-} x_{7, j}}{1-1 / x_{4, k}^{+} x_{7, j}}, \\
& 1=\prod_{j=1}^{K_{6}} \frac{u_{5, k}-u_{6, j}+\frac{q}{2}}{u_{5, k}-u_{6, j}-\frac{i}{2}} \prod_{j=1}^{K_{4}} \frac{x_{5, k}-x_{4, j}^{+}}{x_{5, k}-x_{4, j}^{-}}, \\
& 1=\prod_{j \neq k}^{K_{6}} \frac{u_{6, k}-u_{6, j}-i}{u_{6, k}-u_{6, j}+i} \prod_{j=1}^{K_{5}} \frac{u_{6, k}=u_{5, j}+\frac{i}{2}}{u_{6, k}=u_{5, j}-\frac{i}{2}} \prod_{j=1}^{K_{7}} \frac{u_{6, k}=u_{7, j}+\frac{i}{2}}{u_{6, k}=u_{7_{j}, j}-\frac{i}{2}}, \\
& 1=\prod_{j=1}^{K_{6}} \frac{u_{7, k}-u_{6, j}+\frac{i}{2}}{u_{7, k}-u_{6, j}-\frac{i}{2}} \prod_{j=1}^{K_{1}} \frac{1-1 / x_{7, k} x_{4, j}^{4}}{1-1 / x_{7, k} x_{4, j}^{-}} . \\
& E=\sum_{j} \epsilon\left(u_{4, j}\right)
\end{aligned}
$$

## At any coupling!

## But only for

$L \rightarrow \infty$

Beisert, Staudacher 2005, 2006 Beisert,Hernandez,Lopez Beisert,Eden,Staudacher

## $L=\#$ of fields in operator = spatial size in 2d

## What is the spectrum at finite $L$ ???

## Thermodynamic Bethe ansatz (TBA)



$$
\begin{aligned}
&\underset{\downarrow}{\boldsymbol{Z}} \underset{\substack{\text { }}}{ }, R)=\underset{\downarrow}{\boldsymbol{Z}}(R, L) \\
& \sum e^{-E_{n}(L) R} \sum e^{-E_{n}(R) L}
\end{aligned}
$$

From asymptotic spectrum $(R \rightarrow \infty)$ we get ground state energy at finite volume!

$$
E_{0}(L)=-\lim _{R \rightarrow \infty} \frac{\log \sum e^{-E_{n}(R) L}}{R}
$$

## TBA equations


$R \rightarrow \infty$ : Bethe roots form complexes
$Y_{n}(u)$ are expressed in terms of densities $\rho(u)$

From (mirror) asymptotic Bethe equations
$\Longrightarrow$ TBA equations for $Y$-functions
$\log Y_{n}(u)=\Phi_{n}(u)+\int d v K_{n, m}(u, v) \log \left(1+Y_{m}(v)\right)$

For excited states - contour deformation trick

## Konishi operator: $\operatorname{Tr}\left[\Phi_{1}, \Phi_{2}\right]^{2}$



## Hirota equation



- Large L solutions $\longrightarrow$ ABA
- Efficiently compute weak-coupling corrections Allowed to reduce TBA to a finite set of integral equations!


## Strong coupling

No shifts $\pm \frac{i}{2}$ in I.h.s.


Full T-hook: characters of $\operatorname{PSU}(2,2 \mid 4)$
Matches 1-loop spectral curve results!

## Other integrable cases of AdS/CFT

## Deformations of N=4 SYM

- $\mathrm{N}=1$ or no SUSY
- Dual to deformed versions of AdS5 x S5
- appears to be integrable (ABA, TBA, ...)
- Y -system is the same!

Beisert,Roiban 2005
Gromov,F.L-M 2010
Arutyunov,Leeuw,Tongeren 2010,2012
Ahn, Bajnok,Bombardelli, Nepomecie 2011

Example: weak-coupling checks of Y-system vs direct perturbative results at 11 loops!

## ABJM duality

superstrings in
$A d S^{4} \times C P^{3}$
$\mathcal{N}=6$ 3d superconformal SU(n) x SU(N) Chern-Simons


Y-system and TBA are known

Gromov,Vieira 2008
Gromov,Kazakov,Vieira 2009
Bombardelli,Fioravanti,Tateo 2009 Gromov,F.L-M 2009


TBA numerics, F.L-M. 2011

## Conclusions

- For the first time: exact results (in planar limit) for nontrivial 4d gauge theory in non-BPS sectors
- Full spectrum at any coupling from a system of functional (Y-system, Hirota) or integral (TBA) equations
- Confirmed by all known tests
- Extensions to other AdS/CFT dualities
- Many other directions : 3-point functions, scattering amplitudes, ...


## Classical integrability of the string

Coset sigma model $\frac{\operatorname{PSU}(2,2 \mid 4)}{\operatorname{Sp}(2,2) \times \operatorname{Sp}(4)}$
$A(u)$ - flat connection (on e.o.m.)

$$
u \in \mathbb{C}
$$

$\Omega(u, \tau)=\operatorname{Pexp} \oint A_{\sigma}(u) d \sigma$ eigenvalues $\lambda(u)$ are conserved (spectral curve)


Infinitely many integrals of motion!

## Mixing and integrability in N=4 SYM

$\mathcal{O}_{i}^{\text {ren }}=Z_{i j}(\Lambda) \mathcal{O}_{j}^{\text {bare }} \Longleftrightarrow \Delta=\Delta^{(0)}+\gamma$
Our goal: compute the spectrum of dimensions $\Delta_{i}(\lambda)$
$\gamma_{i}$ are eigenvalues of the mixing matrix: $\Gamma=Z^{-1} \frac{d Z}{d \log \Lambda}$
$\mathcal{O}_{i}(x)=\operatorname{tr}\left(\Phi_{1} \Phi_{2} \Phi_{1} \ldots \Phi_{1} \Phi_{1} \Phi_{2} \Phi_{2} \Phi_{1}\right)(x)$
1 -loop mixing matrix $=$ integrable spin chain Hamiltonian!

$$
L=\text { number of fields }
$$



Minahan, Zarembo 2002

$$
\left(\frac{u_{j}+i / 2}{u_{j}-i / 2}\right)^{L}=-\prod_{k=1}^{M} \frac{u_{j}-u_{k}+i}{u_{j}-u_{k}-i} \quad \gamma=\sum_{k=1}^{M} \frac{\lambda}{u_{k}^{2}+1 / 4}
$$

