4D CP violation from pure gauge in six dimensions

Maxim Libanov

INR RAS, Moscow

In collaboration with
J.-M. Frere and S. Mollet

Outline

- Introduction
- P, C and $C P$ in 4 and 6 dimensions
- Gauge fields. Hosotani mechanism.
- $C P$ violation induced by $B C$
a Examples with $S U(2)$
- Conclusion and perspectives

Introduction

- Sakharov condition: Matter-antimatter asymmetry requires in 4d both C and $C P$ violation (more general: $C S$).
- In 4d SM "pure gauge" interactions respect CP. Only the scalar(s) break CP through the phase(s) of the orbitrary Yukawa couplings.
? How C or $C P$ invariance can be broken in theories containing only fermions and their gauge interactions?

Introduction

- Idea:

Q Extra dimensions: A_{4}, A_{5} components of $6 d$ gauge field A_{A} look as scalars from $4 d$ point of view
a If ED space is not simply connected
\Rightarrow non trivial holonomies (Wilson lines (WL)) can appear dynamically for non contractibel cycles (like magnetic fluxes through holes)
\Rightarrow lead to dinamical gauge symmetry breaking
$\Rightarrow 4 d$ scalars $\left(A_{4}, A_{5}\right)$ aquire a VEV
\Rightarrow could cause CP violation if scalar and pseudo-scalar contributions coexists.

Introduction

a At the classical level, WL are determined by the topology of ED and label degenerate classical vacua.
a Degeneracy disappears due to quantum effects which select the true physical solution.
a These are encoded into the effective potential for WL which depends on topology, matter content and Scherk-Schwarz phases.

NB: Our goal: "proof of concept" -- namely the possibility of CP violation in 4d from pure gauge theory in 6d, but does not propose a realistic model.

Outline

- Introduction
- P, C and $C P$ in 4 and 6 dimensions
- Gauge fields. Hosotani mechanism.
- CP violation induced by BC
a Examples with $S U(2)$
- Conclusion and perspectives
- Some notations:

$$
x^{A}=\left(x^{\mu}, y^{a}\right)=(t, \vec{x}, \vec{y}), \quad \vec{x}=\left(x_{1}, x_{2}, x_{3}\right), \quad \vec{y}=\left(y_{4}, y_{5}\right)
$$

- 「-matrices:

$$
\begin{gathered}
4 d \\
r^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu} \\
\bar{\sigma}^{\mu} & 0
\end{array}\right), v^{5}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\sigma^{\mu}=(1, \vec{\sigma}) \\
P_{L, R}^{(4)}=\frac{1 \pm v^{5}}{2} \Rightarrow \\
\psi=\binom{\psi_{L}}{\psi_{R}}
\end{gathered}
$$

$$
\begin{gathered}
6 d \\
\Gamma^{A}=\left(\begin{array}{cc}
0 & \Sigma^{A} \\
\Sigma^{A} & 0
\end{array}\right), \Gamma^{7}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\Sigma^{A}=\left(\gamma^{0} \psi^{H}, i \gamma^{0} v^{5}, v^{0}\right) \\
P_{ \pm}^{(6)}=\frac{1 \pm \Gamma^{7}}{2} \Rightarrow \\
\psi=\binom{\psi_{+}}{\psi_{-}}
\end{gathered}
$$

- C-conjugation:

$$
\begin{aligned}
& \text { 4d } \\
& \mathcal{C} \psi \mathcal{C}^{-1}=\psi^{c}=C^{(4)} \gamma^{0} \psi^{*} \Rightarrow C^{(4)} \leadsto \gamma^{2} \gamma^{0} \\
& \text { even number! } \\
& \Downarrow \\
& \left\{y^{5}, C^{(4)} y^{0}\right\}=0 \\
& \Downarrow \\
& \psi_{L}^{c} \leftrightarrow \psi_{R}^{*}, \psi_{R}^{c} \leftrightarrow \psi_{L}^{*}
\end{aligned}
$$

$$
\psi_{L} \sim \psi_{R}^{*} \quad \Psi_{+} \sim \psi_{+}^{*}, \Psi_{-} \sim \psi_{-}^{*}
$$

NB: Gauge interactions connect the same chirality \Rightarrow no reason to introduce both chiralities on an equal footing. Chiral Lagrangians:

C-nonivariant
C-invariant

- P-transformations:

$$
\begin{gathered}
4 d \\
\mathcal{P} \psi(t, \bar{x}) \mathcal{P}^{-1}=\psi^{p}=\gamma^{0} \psi(t,-\bar{x}) \\
\Downarrow \\
\left\{\gamma^{5}, \nu^{0}\right\}=0 \\
\Downarrow \\
\psi_{L}^{p} \leftrightarrow \psi_{R}, \psi_{R}^{p} \leftrightarrow \psi_{L}
\end{gathered}
$$

$$
\begin{gathered}
6 d \\
\mathcal{P} \psi(t, \vec{x}, \vec{y}) \mathcal{P}^{-1}=\psi P=\Gamma^{0} \psi(t,-\vec{x},-\vec{y}) \\
\Downarrow \\
\left\{\Gamma^{7}, \Gamma^{0}\right\}=0 \\
\Downarrow \\
\Psi_{+}^{p} \leftrightarrow \Psi_{-}, \quad \psi \underline{p} \leftrightarrow \Psi_{+}
\end{gathered}
$$

NB: Chiral Lagrangians:

P-nonivariant
\Downarrow
CP-ivariant

P-noninvariant

CP-noninvariant

- In 6d if we introduce only (say) Ψ_{+}then we break CP .

Does it mean that the resulting 4d theory is not CP conserving? The answer is NO.
a We need to find a relation between 4d and 6d CP transformations.

- From the 4d point of view an analog of y_{5} (which acts on a 6d spinor) is

$$
\bar{Y}_{5} \sim \Gamma_{0} \Gamma_{1} \Gamma_{2} \Gamma_{3} \sim\left(\begin{array}{cc}
-v_{5} & 0 \\
0 & v_{5}
\end{array}\right) \Rightarrow
$$

$$
\psi=\binom{\psi_{+}}{\psi_{-}} \rightarrow \psi_{+}=\binom{\psi_{R}}{\psi_{L}}=v_{0}\binom{\psi_{L}}{\psi_{R}} \sim \psi_{\text {Dirac }}
$$

e C-conjugation:

$$
\psi_{+}^{C_{6}} \sim Y_{5} \gamma_{2} \psi_{+}^{*}
$$

e On the other hand $4 \mathrm{~d} \mathrm{CP}_{4}$ should looks like:

$$
\psi_{+}^{C P_{4}}(t, \vec{x}, \vec{y}) \sim \operatorname{VoY}_{2} \psi_{+}^{*}\left(t,-\vec{x}, \vec{y}^{\prime}\right) \text { or } \psi_{+}^{P_{4}}(t, \vec{x}, \vec{y}) \sim \mathrm{Yov}_{5} \psi_{+}\left(t,-\vec{x}, \vec{y}^{\prime}\right)
$$

a But $\mathrm{y}_{0} \mathrm{~V}_{5}$ is the Lorentz generator of a π-rotation in the (1-2), (3-5) planes. That is, if $\vec{y}^{\prime}=\left(y_{4},-y_{5}\right)$ then P_{4} is nothing but $6 d$ rotations!
NB: Rotations in the $(4-5)$ plane on an angle θ is $4 d$ chiral rotations

$$
\vec{y}^{\prime}=\mathcal{R}(\theta) \vec{y} \rightarrow \psi_{+}\left(\dagger, \vec{x}, \bar{y}^{\prime}\right)=e^{i V_{5} \theta / 2} \psi_{+}(\dagger, \vec{x}, \vec{y})
$$

P, C and $C P$ in 4 and 6 dimensions

Q In other words, CP_{4} transformations correspond to the transformations

$$
\left\{\begin{array}{l}
\psi_{+}(t, \vec{x}, \vec{y}) \rightarrow \psi_{+}^{C P_{4}}(\dagger, \vec{x}, \vec{y}) \sim \mathrm{yo}_{0} \mathrm{v}_{2} e^{-i \mathrm{v}_{5} \theta / 2} \psi_{+}^{*}\left(t,-\vec{x}, \vec{y}^{\prime}\right) \\
\vec{y} \rightarrow \vec{y}^{\prime}=\mathcal{R}(\theta) \sigma_{3} \vec{y}=\mathcal{R}(\theta) \cdot\left(y_{4},-y_{5}\right)^{\top}
\end{array}\right.
$$

which are a symmetry of the 6d Lagrangian: 6d C-conjugation + rotations.

Q 4d effective theory will be CP violating only if the compactification is incompatible with these symmetries. Or, in other words, if we fail to find a chiral rotation which reabsorbs the phases.

Q Example: Consider a flat torus \mathbb{T}^{2} of radii $R_{4}=R_{5}=R$. Sch-Sch b.c.

$$
\left\{\begin{array}{l}
\psi_{+}\left(y_{4}+2 \pi R, y_{5}\right)=e^{i \beta_{4} \psi_{+}\left(y_{4}, y_{5}\right)} \\
\psi_{+}\left(y_{4}, y_{5}+2 \pi R\right)=e^{i \beta_{5}} \psi_{+}\left(y_{4}, y_{5}\right)
\end{array}\right.
$$

Q Under the prescribed transformations the b.c. becomes

$$
\left\{\begin{array}{l}
\psi_{+}\left(y_{4}+2 \pi R \cos \theta, y_{5}+2 \pi R \sin \theta\right)=e^{-i \beta_{4} \psi_{+}\left(y_{4}, y_{5}\right)} \\
\psi_{+}\left(y_{4}+2 \pi R \sin \theta, y_{5}-2 \pi R \cos \theta\right)=e^{-i \beta_{5} \psi_{+}\left(y_{4}, y_{5}\right)}
\end{array}\right.
$$

Q These b.c. are compatible iff $\beta_{4}, \beta_{5}=0$ or π
e That is, b.c. break effective $4 d \quad C P_{4}$ symmetry as soon as β_{4}, β_{5} are both different from 0 or π.

Outline

- Introduction
- P, C and CP in 4 and 6 dimensions
- Gauge fields. Hosotani mechanism.
- CP violation induced by BC
a Examples with $S U(2)$
- Conclusion and perspectives

Gauge fields. Hosotani mechanism.

- To be specific in what follows we will work on flat space-time $\mathbb{M}^{4} \times \mathbb{T}^{2}$. \mathbb{T}^{2} is a flat torus of radii R_{4}, R_{5} (in general, $R_{4} \neq R_{5}$); $i, j, \ldots=4,5$.
- Turn off the fermions and turn on non-abelian gauge field A_{A}.

NB: In general, two kinds of compactification exist: the "non-magnetized" and the "magnetized" one:
a "non-magnetized" -- a non zero field strength is unstable and the only solutions are flat connections.
Example: $S U(N)$ gauge group and a flat torus \mathbb{T}^{2}-- this case we will consider in what follows.
a "magnetized" -- a non zero field strength can be stable and the solution corresponds to a physical flux orthogonal to the ED. The stability is ensured by the quantization of the flux for topological reasons.
Example: $U(N)$ gauge group and a flat torus \mathbb{T}^{2}.

Gauge fields. Hosotani mechanism.

- B.C. : Because of the translation symmetry on the torus, gauge fields must be periodic up to a gauge transformations:

$$
A_{A}\left(x, y_{i}+2 \pi R_{i}\right)=T_{i}(y) A_{A}(x, y) T_{i}^{-1}(y)+T_{i}(y) \partial_{A} T_{i}^{-1}(y)
$$

where the transition functions $T_{i}(y)$ must satisfy

$$
T_{4}\left(y_{4}, y_{5}+2 \pi R_{5}\right) T_{5}(y)=T_{5}\left(y_{4}+2 \pi R_{4}, y_{5}\right) T_{4}(y)
$$

- The $B C, T_{i}$ do not fix the symmetry of the effective 4d theory: A_{4}, A_{5} (4d scalars) could acquire "VEV" $\left\langle A_{4}\right\rangle,\left\langle A_{5}\right\rangle$ through quantum effects. More precisely, some non-integrable phases become dynamical variables and can lead to effective symmetry breaking in 4d .

Gauge fields. Hosotani mechanism.

NB: Neither "VEV" nor $B C\left(T_{i}\right)$ are gauge invariant concepts:

$$
\begin{gathered}
\left\langle A_{i}\right\rangle^{\prime}=\Omega\left\langle A_{i}\right\rangle \Omega^{-1}+\Omega \partial_{i} \Omega^{-1} \\
T_{i}^{\prime}(y)=\Omega\left(y_{i}+2 \pi R_{i}\right) T_{i}(y) \Omega(y)^{-1}
\end{gathered}
$$

The true gauge invariant quantities, which label vacuua, are Wilson lines phases (WLP)

$$
W_{c_{i}} T_{c_{i}}=\mathcal{P} \exp \left(\oint_{c_{i}} d y_{j}^{\prime}\left\langle A_{j}\left(y^{\prime}\right)\right\rangle\right) T_{c_{i}}(y)
$$

C_{i}--non-contractible cycles, starting at y, and $T_{C_{i}}$, the associated $B C$.
What is the general form of the WLP?

Gauge fields. Hosotani mechanism.

a The compactification is "non-magnitazed": $\left\langle F_{45}\right\rangle=0$. Indeed,
e The Lagrangian for pertubations \tilde{A}_{A} looks like

$$
\operatorname{Tr}_{A B}^{2}\left[\left\langle A_{M}\right\rangle+\tilde{A}_{M}\right] \sim \operatorname{Tr}\left(\left\langle F_{A B}\right\rangle+F_{A B}\left(\tilde{A}_{M}\right)+\ldots\right)^{2} \sim \ldots+g f^{a b c}\left\langle F_{45}^{a}\right\rangle \tilde{A}_{4}^{b} \tilde{A}_{5}^{c}
$$

a So, $m_{b c}^{2} \sim g^{f a b c}\left\langle F_{45}^{a}\right\rangle$ is the mass matrix for $4 d$ scalars $\tilde{A}_{4}^{b}, \tilde{A}_{5}^{c}$. If $\left\langle F_{45}\right\rangle \neq 0$ and the group is simple $(S U(N))$

$$
m_{b c}^{2} \neq 0
$$

e But

$$
f^{a b c}=-f^{a c b} \Rightarrow m_{b c}^{2}=-m_{c b}^{2} \Rightarrow \operatorname{Trm}^{2}=0 \Rightarrow
$$

There should be positive $\left(m^{2}>0\right)$ and negative $\left(m^{2}<0\right)$ eigenvalues
\Rightarrow Nielsen-Olesen instability \Rightarrow

$$
\begin{gathered}
\left\langle F_{45}\right\rangle=0 \\
\Downarrow
\end{gathered}
$$

Gauge fields. Hosotani mechanism.

Q The "VEV" must be pure gauge

$$
\left\langle A_{i}(y)\right\rangle=S(y) \partial_{i} S(y)^{-1}
$$

a S must be compiteble with the $B C \Rightarrow$

$$
S\left(y_{i}+2 \pi R_{i}\right)=T_{i}(y) S(y) V_{i}^{-1}
$$

where V_{i} constant elements of the gauge group such that

$$
\left[V_{4}, V_{5}\right]=0
$$

Q Under the gauge transformation $\Omega=S^{\dagger}$:

$$
S(y) \rightarrow 1 \Rightarrow\left\langle A_{i}^{\prime}(y)\right\rangle=0, \quad 1=T_{i}^{\prime} V_{i}^{-1} \Rightarrow
$$

Wilson line phases

$$
W_{c_{\mathrm{i}}} T_{c_{\mathrm{i}}}=\mathrm{W}_{c_{\mathrm{i}}}^{\prime} T_{c_{\mathrm{i}}}^{\prime}=V_{\mathrm{i}}
$$

Gauge fields. Hosotani mechanism.

e Therefore, all possible classical vacua can be labeled by constant

$$
W_{c_{\mathrm{i}}} T_{c_{\mathrm{i}}}=\mathrm{V}_{\mathrm{i}}=\exp \left(\mathrm{ia}_{\mathrm{i}}\right)
$$

where a_{i} are commuting (hermitian) matrices of $S U(N)$ algebra.
NB: In general, among other, there are two approaches
Q One can gauge away "VEVs": $\left\langle A_{4,5}\right\rangle=0$ and leaves with the nontrivial $B C$

$$
T_{i}=V_{i}=\exp \left(i a_{i}\right)
$$

Q One can gauge away $B C: T_{i}=1$ and leaves with the non-trivial "VEVs"

$$
\left\langle A_{i}\right\rangle=\frac{a_{i}}{2 \pi R_{i}}
$$

We will use the first approach.

Outline

- Introduction
- P, C and $C P$ in 4 and 6 dimensions
- Gauge fields. Hosotani mechanism.
- $C P$ violation induced by $B C$
e Examples with $\operatorname{SU}(2)$
- Conclusion and perspectives

$C P$ violation induced by $B C$

- Turn on fermions. $B C$ in the presence of a gauge field for the fermion become

$$
\psi_{+}\left(y+2 \pi R_{i}\right)=\exp \left(i \beta_{i}\right) T_{i} \psi_{+}(y)
$$

or in our gauge $\left\langle A_{4,5}\right\rangle=0$

$$
\psi_{+}\left(y+2 \pi R_{i}\right)=\exp \left(i \beta_{i}\right) \exp \left(i a_{i}\right) \psi_{+}(y)
$$

- $C P_{4}$ is conserved if $B C$ are symmetric under the transformations

$$
\left\{\begin{array}{l}
\Psi_{+} \rightarrow U^{*} \Psi_{+}^{*}, \text { where } U \text {-- constant matrix } \\
\vec{y} \rightarrow \vec{y}^{\prime}=\mathcal{R}(\theta) \sigma_{3} \vec{y}
\end{array}\right.
$$

- Under the prescribed transformations $B C$ become

$$
\left\{\begin{array}{l}
\psi_{+}^{C P_{4}}\left(y_{4}+2 \pi R_{4} \cos \theta, y_{5}+2 \pi R_{4} \sin \theta\right)=e^{-i \beta_{4}} \exp \left[-i\left(U a_{4} U^{-1}\right)^{*}\right] \psi_{+}^{C P_{4}}(\vec{y}) \\
\psi_{+}^{C P_{4}}\left(y_{4}+2 \pi R_{5} \sin \theta, y_{5}-2 \pi R_{5} \cos \theta\right)=e^{-i \beta_{5}} \exp \left[-i\left(U a_{5} U^{-1}\right)^{*}\right] \psi_{+}^{C_{4}}(\vec{y})
\end{array}\right.
$$

$C P$ violation induced by $B C$

Transformations that could be identified with an effective CP_{4} symmetry in $4 d$ if compatible with $B C$. Here

$$
T=\operatorname{diag}(1,1, \ldots, 1,1-N)
$$

$$
k, k^{\prime}=0, \ldots, N-1 \text { for adjoint fermions }
$$

$$
k, k^{\prime}=0 \text { for fundumental fermions }
$$

$C P$ violation induced by $B C$

Two questions:

- Which patterns can be realized and under which conditions? General strategy:
Q We need to compute the effective potential for WLP for each group and representations we want to study
$V_{\text {eff }}=$ constx $\left(-V_{\text {eff }}^{g+g h}+\sum_{i, R} V_{\text {eff }}^{f e r m}{ }_{i, R}+\right.$ possible matter contributions $)$
Q Then find the minima of this potential $\left(a_{i}\right)$ which depend on many parameters: β_{i}, R_{i}, matter content, etc.
Q Then check whether $C P_{4}$ is conserved or not.

$C P$ violation induced by $B C$

- At which level does $C P_{4}$ violation manifest itself (and what could be phenomenologically promising)?
Q Main limitation (without any new mechanism) is the absence of gap between light and heavy sectors: $m \sim 1 / R$. A partial (quite inelegant) answer to this issue $m_{\text {light }} \sim \beta / R$ while $m_{\text {heavy }} \sim 1 / R$. If $\beta \ll 1$ then $m_{\text {light }} \ll m_{\text {heavy }}$
Q CP violation is, even in the Standard Model, a tricky issue to characterize (the Jarlskog determinants providing a partial answer). To prove that CP_{4} is violated, the safest way is to provide an "observable". Here we will deal with a single (light) fermion species and the simplest "observable"is then the electric dipole moment (EDM) of the lightest mode.

Example with $\operatorname{SU}(2)$

- Let us consider $S U(2)$ group with one fermion in an adjoint representation.
- Numerical calculations show that, in the interesting regime

$$
\begin{gathered}
\beta_{4,5} \in[0,0.1] \text { and } 0.9<r \equiv \frac{R_{5}}{R_{4}}<1 \\
a_{4}=a_{5}=\frac{\pi}{2} \tau_{3}
\end{gathered}
$$

- It means that the $\mathrm{SU}(2)$ is broken into $\mathrm{U}(1)$, and we have a neutral fermion with mass

$$
m_{\text {light }} \simeq \frac{\beta}{R}\left(1+\frac{\Delta \beta}{\beta}+\Delta r\right), \Delta \beta=\beta_{4}-\beta_{5}, \Delta r=1-\frac{R_{5}}{R_{4}}
$$

- The EDM of this mode is

$$
\left|\frac{d_{E} R}{e^{3}}\right| \simeq 0.01\left(\Delta r+4.5 \frac{\triangle \beta}{\beta}\right)
$$

β	$\Delta \beta / \beta$	Δr	$m_{\text {ligh }} R$	$d_{E} R / e^{3}$
10^{-1}	0	10^{-1}	1.3510^{-1}	1.0910^{-3}
10^{-1}	0	10^{-2}	1.4110^{-1}	0.9910^{-4}
10^{-1}	0	10^{-3}	1.4110^{-1}	0.9810^{-5}
10^{-1}	0	10^{-4}	1.4110^{-1}	0.9810^{-6}
10^{-1}	10^{-1}	0	1.3510^{-1}	4.6610^{-3}
10^{-1}	10^{-2}	0	1.4110^{-1}	4.5010^{-4}
10^{-1}	10^{-3}	0	1.4110^{-1}	4.4810^{-5}
10^{-2}	10^{-1}	0	1.3510^{-2}	4.2810^{-3}
10^{-3}	10^{-1}	0	1.3510^{-3}	4.2810^{-3}
10^{-3}	10^{-1}	10^{-1}	1.2710^{-3}	5.7110^{-3}
10^{-3}	10^{-1}	10^{-2}	1.3310^{-3}	4.4110^{-3}
10^{-3}	10^{-1}	10^{-3}	1.3410^{-3}	4.2910^{-3}

Conclusion

We made use of the Hosotani mechanism to generate both gauge and CP symmetry breacking through compactification from a 6 d model.

Our solutions is far from being realistic, they must be seen more as "proof of concept".

Perspectives

- New compactification mechanism (like orbifold or magnetized compactification) might be employed to reach a chiral theory in 4d .
- A mechanism which produces a low energy sector naturally separated from the KK scale would be very welcome. (E.g., one can hope for an effective low energy potential between the remaining scalars, what would provide the lower mass scale).

