New solution for the warp factor in the Randall-Sundrum scenario

Alexander Kisselev
IHEP, Protvino, Russia

18th International Seminar on High Energy Physics "QUARKS-2014", Suzdal, Russia, 2-8 June, 2014

Plan of the talk

Randall-Sundrum (RS) scenario with two branes

- Original RS solution for the warp factor of the metric
Generalization of the RS solution
Role of the constant term. Different physical schemes
- Conclusions

Randall-Sundrum scenario

Background metric (y is an extra coordinate)

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{v}-d y^{2}
$$

Z_{2}-symmetry: $(x, y)=(x,-y)$
Periodicity: $\left(x, y \pm 2 \pi r_{c}\right)=(x, y)$
\longrightarrow orbifold $S^{1} / Z_{2} \quad 0 \leq y \leq \pi r_{c}$

Two fixed points: $y=0$ and $y=\pi r_{c}$ two 3-branes

AdS_{5} space-time

Five-dimensional action $S=S_{g}+S_{1}+S_{2}$

$$
\begin{aligned}
& S_{g}=\int d^{4} x \int d y \sqrt{G}\left(2 M_{5}^{3} R^{(5)}-\Lambda\right) \\
& S_{1(2)}=\int d^{4} x \sqrt{g_{1(2)}}\left(L_{1(2)}-\Lambda_{1(2)}\right)
\end{aligned}
$$

Induced brane metrics

$$
g_{\mu \nu}^{(1)}=G_{\mu \nu}(x, y=0), \quad g_{\mu \nu}^{(2)}=G_{\mu \nu}\left(x, y=\pi r_{c}\right)
$$

Einstein-Hilbert's equations

$$
\begin{aligned}
\sqrt{|G|}\left(R_{M N}-\frac{1}{2} G_{M N} R\right)=-\frac{1}{4 M_{5}^{3}} & {\left[\sqrt{G} G_{M N} \Lambda+\sqrt{g^{(1)}} g_{\mu \nu}^{(1)} \delta_{M}^{\mu} \delta_{N}^{\nu} \delta(y) \Lambda_{1}\right.} \\
+ & \left.\sqrt{g^{(2)}} g_{\mu \nu}^{(2)} \delta_{M}^{\mu} \delta_{N}^{\nu} \delta\left(y-\pi r_{c}\right) \Lambda_{2}\right]
\end{aligned}
$$

Five-dimensional background metric tensor

$$
\begin{aligned}
G^{M N} & =\left(\begin{array}{cc}
g^{\mu v} & 0 \\
0 & -1
\end{array}\right) \quad g^{\mu v}=\exp [-2 \sigma(y)] \eta^{\mu v} \\
& \longrightarrow d s^{2}=e^{-2 \sigma(y)} \eta_{\mu v} d x^{\mu} d x^{v}-d y^{2}
\end{aligned}
$$

E-H's equations for the warp function $\sigma(y)$:

$$
\begin{aligned}
& \sigma^{\prime 2}(y)=-\frac{\Lambda}{24 M_{5}^{3}} \\
& \sigma^{\prime \prime}(y)=\frac{1}{12 M_{5}^{3}}\left[\Lambda_{1} \delta(y)+\Lambda_{2} \delta\left(\pi r_{c}-y\right)\right]
\end{aligned}
$$

Randall-Sundrum solution

(Randall \& Sundrum, 1999)

$$
\sigma(y)=\kappa|y| \quad \Lambda=-24 M_{5}^{3} \kappa^{2}, \quad \Lambda_{1}=-\Lambda_{2}=24 M_{5}^{3} \kappa
$$

$\longrightarrow \sigma^{\prime}(y)=\kappa \varepsilon(y) \quad($ anti-symmetric in $y)$

The RS solution:

- does not explicitly reproduce the jump on brane $y=\pi r_{c}$
- is not symmetric with respect to the branes, although both branes (at points $y=0$ and $y=\pi r_{c}$) must be treated on an equal footing
- does not include an arbitrary constant

Generalization of RS solution

For the open interval $0<y<\pi r_{c}$ the solution is trivial

$$
\sigma(y)=\kappa y+\text { constant }
$$

Let us define: $\Lambda=-24 M_{5}^{3} \kappa^{2} \lambda, \quad \Lambda_{1,2}=12 M_{5}^{3} \kappa \lambda_{1,2}$
Solution of 2-nd equation for $0 \leq y \leq \pi r_{c}$

$$
\begin{gathered}
\sigma(y)=\frac{\kappa}{4}\left[\left(\lambda_{1}-\lambda_{2}\right)\left(|y|-\left|y-\pi r_{c}\right|\right)+\left(\lambda_{1}+\lambda_{2}\right)\left(|y|+\left|y-\pi r_{c}\right|\right)\right]+\text { constant } \\
\text { where } \lambda_{1}-\lambda_{2}=2
\end{gathered}
$$

Symmetry with respect to the branes
\longrightarrow two possibilities:

- brane tensions $\Lambda_{1,2}$ have the same sign

$$
\lambda_{1}-\lambda_{2}=0 \quad \text { this case cannot be realized }
$$

- brane tensions $\Lambda_{1,2}$ have opposite signs

$$
\lambda_{1}+\lambda_{2}=0
$$

As a result: $\quad \lambda_{1}=-\lambda_{2}=1$

$$
\lambda=\frac{1}{4}\left[\varepsilon(y)-\varepsilon\left(y-\pi r_{c}\right)\right]^{2}
$$

The periodicity condition means:

$$
\varepsilon\left(-y-\pi r_{c}\right)=-\varepsilon\left(y+\pi r_{c}\right)=-\varepsilon\left(y-\pi r_{c}\right)
$$

Expression for the warp function (A.K., 2013)

$$
\sigma(y)=\frac{\kappa}{2}\left(|y|-\left|y-\pi r_{c}\right|\right)+C \quad \mathbf{C}=\mathbf{c o n s t a n t}
$$

with the fine tuning

$$
\Lambda=-24 M_{5}^{3} \kappa^{2}, \quad \Lambda_{1}=-\Lambda_{2}=12 M_{5}^{3} \kappa
$$

Derivative of $\sigma(y)$ at $|y|<\pi r_{c}$

$$
\sigma^{\prime}(y)=\frac{\kappa}{2}\left[\varepsilon(y)-\varepsilon\left(y-\pi r_{c}\right)\right]
$$

is anti-symmetric in y: $\sigma^{\prime}(y)=-\sigma^{\prime}(-y)=\kappa \operatorname{sign}(y)$

$$
\sigma^{\prime}(y)=\kappa\left[\delta(y)-\delta\left(y-\pi r_{c}\right)\right] \quad\left(0 \leq y \leq \pi r_{c}\right)
$$

Two equivalent RS-like solutions

Neither of two branes/fixed points is preferable provided orbifold and periodicity conditions are taken into account

If starting from the point $\boldsymbol{y}=0 \longrightarrow \sigma_{0}(y)=\kappa|y|+C_{0}$
If starting from the point $y=\pi r_{c} \longrightarrow \sigma_{\pi}(y)=-\kappa\left|y-\pi r_{c}\right|+C_{\pi}$

Solution symmetric with respect to the branes:

$$
\sigma(y)=\frac{1}{2}\left[\sigma_{0}(y)+\sigma_{\pi}(y)\right]=\frac{\kappa}{2}\left(|y|-\left|y-\pi r_{c}\right|\right)+C
$$

Note that $\left|-\boldsymbol{y}-\pi r_{c}\right| \equiv\left|y+\pi r_{c}\right|=\left(y \rightarrow y-2 \pi r_{c}\right)=\left|\boldsymbol{y}-\pi r_{c}\right|$
(consistence with the orbifold symmetry)

Our solution for $\sigma(y)$:

- is symmetric with respect to the branes

$$
y \rightarrow\left|y-\pi r_{c}\right|, \quad \kappa \rightarrow-\kappa
$$

- makes the jumps on both branes

$$
\sigma^{\prime \prime}(y)=\kappa\left[\delta(y)-\delta\left(y-\pi r_{c}\right)\right]
$$

- is consistent with the orbifold symmetry

$$
y \rightarrow-y
$$

- depends on the constant C

Let us define: $\sigma_{1}=\sigma(0), \sigma_{1}=\sigma\left(\pi r_{c}\right)$
note that $\quad \sigma_{1,2}=\sigma_{1,2}(\boldsymbol{C}) \quad \Delta \sigma=\sigma_{2}-\sigma_{1}=2 \pi \kappa r_{c}$

Hierarchy relation (depends on C)

$$
M_{\mathrm{Pl}}^{2}=\frac{M_{5}^{3}}{\kappa} \exp \left(-2 \sigma_{1}\right)\left[1-\exp \left(-2 \pi \kappa r_{c}\right)\right]
$$

Masses of KK gravitons

$$
\left(x_{n} \text { are zeros of } J_{1}(x)\right)
$$

The very expression for m_{n} is independent of C, but values of m_{n} depend on C via M_{5} and k

Interaction Lagrangian on the TeV brane (massive gravitons only)

$$
L(x)=-\frac{1}{\Lambda_{\pi}} \sum_{n=1}^{\infty} h_{\mu \nu}^{(n)}(x) T_{\alpha \beta}(x) \eta^{\mu \alpha} \eta^{\nu \beta}
$$

Coupling constant

$$
\Lambda_{\pi}=\frac{M_{\mathrm{Pl}}}{\sqrt{\exp \left(2 \pi \kappa r_{c}\right)-1}}
$$

Parameters $\mathrm{M}_{5}, \mathrm{~K}, \Lambda_{\pi}$ depend on constant C

Different values of this constant result in quite diverse physical models

From now on it will be assumed that $\kappa \pi r_{c} \gg 1$

Different physical schemes

$$
\text { I. } \boldsymbol{C}=\boldsymbol{\kappa} \pi \boldsymbol{r}_{\boldsymbol{c}} / \boldsymbol{2} \quad \sigma_{1}=0, \quad \sigma_{2}=\kappa \pi r_{c}
$$

$$
M_{\mathrm{Pl}}^{2} \cong \frac{M_{5}^{3}}{\kappa} \quad \text { that requires } \quad M_{5} \sim \kappa \sim M_{\mathrm{Pl}}
$$

Masses of $K K$ resonances $m_{n} \cong x_{n} \kappa \exp \left(-\kappa \pi r_{c}\right)$

RS1 model (Randall \& Sundrum, 1999)

Graviton spectrum - heavy resonances, with the lightest one above 1 TeV

$$
\text { II. } \boldsymbol{C}=\boldsymbol{- \kappa} \pi \boldsymbol{r}_{\boldsymbol{c}} / \boldsymbol{2} \quad \sigma_{1}=-\kappa \pi r_{c}, \quad \sigma_{2}=0
$$

$$
M_{\mathrm{Pl}}^{2} \cong \frac{M_{5}^{3}}{\kappa} \exp \left(2 \pi \kappa r_{c}\right)
$$

$$
\kappa \ll M_{5} \quad \kappa r_{c} \approx 9.5 \text { for } M_{5}=1 \mathrm{TeV}, \kappa=100 \mathrm{MeV}
$$

Masses of KK resonances $m_{n} \cong x_{n} \kappa$
RSSC model: RS-like scenario with the small curvature of 5-dimensional space-time

For small κ, graviton spectrum is similar to that of the ADD model
(Giudice, Petrov \& A.K., 2005)

Effective gravity action

$$
S_{\mathrm{eff}}=\frac{1}{4} \sum_{n=0}^{\infty} \int d^{4} x\left[\partial_{\mu} h_{\rho \sigma}^{(n)}(x) \partial_{\nu} h_{\delta \lambda}^{(n)}(x) \eta^{\mu v}-m_{n}^{2} h_{\rho \sigma}^{(n)}(x) h_{\delta \lambda}^{(n)}(x)\right] \eta^{\rho \delta} \eta^{\sigma \lambda}
$$

Shift $\sigma \rightarrow \sigma-B$ is equivalent to the change $x^{\mu} \rightarrow x^{\prime \mu}=\mathrm{e}^{-B} x^{\mu}$
Invariance of the action rescaling of fields and masses:

$$
h_{\mu \nu}^{(n)} \rightarrow h_{\mu \nu}^{\prime(n)}=\mathrm{e}^{B} h_{\mu \nu}^{(n)}, \quad m_{n} \rightarrow m_{n}^{\prime}=\mathrm{e}^{B} m_{n}
$$

Example: $B=\pi \kappa r_{c}($ RS1 \rightarrow RSSC $)$

$$
\sigma \rightarrow \sigma-\pi \kappa r_{c} \quad \longrightarrow \quad x_{n} \kappa \exp \left(-\kappa \pi r_{c}\right) \rightarrow x_{n} \kappa
$$

III. $\boldsymbol{C}=\mathbf{0} \quad \sigma_{1}=-\sigma_{2}=\kappa \pi r_{C} / 2$

"Symmetric scheme" (A.K., 2014)

In variable $z=\boldsymbol{y}-\boldsymbol{\pi} \boldsymbol{\kappa} \boldsymbol{r}_{\boldsymbol{c}} \mathbf{2}: \quad \sigma(z)=\frac{\kappa}{2}\left(\left|\frac{\pi r_{c}}{2}+z\right|-\left|\frac{\pi r_{c}}{2}-z\right|\right)+C$

$$
M_{\mathrm{Pl}}^{2} \cong \frac{2 M_{5}^{3}}{\kappa} \sinh \left(2 \pi \kappa r_{c}\right)
$$

Masses of gravitons $\quad m_{n} \cong x_{n} \kappa \exp \left(-\kappa \pi r_{c} / 2\right)$

Let $\kappa \ll M_{5} \quad M_{5}=2 \cdot 10^{9} \mathrm{GeV}, \kappa=10^{4} \mathrm{GeV}$

$$
\left\{\begin{array}{l}
\Lambda_{\pi}=3 \cdot 10^{5} \mathrm{GeV} \\
m_{n} \cong 3.7 x_{n}(\mathrm{MeV})
\end{array}\right.
$$

Almost continuous spectrum

 of the gravitons
Virtual s-channel Gravitons

Scattering of SM fields mediated by graviton exchange in s-channel

Processes:

$$
\begin{aligned}
& p p \rightarrow l^{+} l^{-}(\gamma \gamma, 2 j e t s)+X \\
& e^{+} e^{-} \rightarrow \overline{f f}(\gamma \gamma), \quad f=l, q
\end{aligned}
$$

Sub-processes:

$$
q \bar{q}, g g \rightarrow h^{(n)} \rightarrow \overline{f f}, \gamma \gamma
$$

Matrix element of sub-process

Graviton widths: $\quad \Gamma_{n}=\eta m_{n}^{3} / \Lambda_{\pi}^{2}, \eta \cong 0.1$

In symmetric scheme (A.K., 2014)

$$
S(s)=\frac{1}{2 \Lambda_{\pi}^{3} \sqrt{s}}\left(\frac{M_{5}}{\kappa}\right)^{3 / 2} \frac{J_{2}(z)}{J_{1}(z)} \text { with } \quad z \cong \frac{\sqrt{s}}{\Lambda_{\pi}}\left(\frac{M_{5}}{\kappa}\right)^{3 / 2}
$$

(relation of m_{n} with x_{n} was used)

For chosen values of parameters:

$$
|S(s)|=\frac{\mathrm{O}(1)}{(1 \mathrm{TeV}) \sqrt{s}}
$$

TeV physics (instead of large value of Λ_{π})

Conclusions

- Generalized RS-like solution for the warp factor $\sigma(y)$ is derived
- New expression:
- is symmetric with respect to the branes
- has the jumps on both branes
- is consistent with the orbifold symmetry
- $\sigma(y)$ depends on arbitrary constant C
- Different values of \mathbf{C} result in quite diverse physical schemes
Particular solutions are: RS1 model,
RSSC model, symmetric scheme

Thank you

 for your attention
Back-up slides

RSSC model vs. ADD model

RSSC model is not equivalent to the ADD model with one ED of the size $R=(\pi \kappa)^{-1}$ up to $\kappa \approx 10^{-20} \mathrm{eV}$

Hierarchy relation for small κ

$$
M_{\mathrm{Pl}}^{2} \cong \frac{M_{5}^{3}}{\kappa}\left[\exp \left(2 \pi \kappa r_{c}\right)-1\right] \xrightarrow{2 \pi \kappa r_{c} \ll 1} M_{5}^{3}\left(2 \pi r_{c}\right)
$$

But the inequality $2 \pi \kappa r_{c} \ll 1$ means that

$$
\kappa \ll \frac{M_{5}^{3}}{M_{\mathrm{Pl}}^{2}} \approx 0.17 \cdot 10^{-18}\left(\frac{M_{5}}{1 \mathrm{TeV}}\right)^{3} \mathrm{eV}
$$

Dilepton production at LHC

Pseudorapidity cut: $|\eta| \leq 2.4$
Efficiency: 85 \%
K-factor:
1.5 for SM background
1.0 for signal

Graviton contributions to the process $\mathbf{p p} \rightarrow \mu+\mu-+\mathbf{X}$ (solid lines) vs. SM contribution (dashed line) for 7 TeV

Graviton contributions to the process pp $\rightarrow \mu+\mu-+X$ (solid lines) vs. SM contribution (dashed line) for 14 TeV

Number of events with $p_{t}>p_{t}{ }^{\text {cut }}$

$$
N_{S}=\int_{p_{\perp}^{\text {cut }}} \mathrm{dp}_{\perp} \frac{d \sigma(\text { grav })}{\mathrm{dp}_{\perp}}, \quad N_{B}=\int_{p_{\perp}^{\mathrm{cut}}} \mathrm{dp}_{\perp} \frac{d \sigma(\mathrm{SM})}{\mathrm{dp}_{\perp}}
$$

Interference SM-gravity contribution is negligible

Statistical significance

$$
S=\frac{N_{S}}{\sqrt{N_{S}+N_{B}}}
$$

$S=5 \longrightarrow$ Lower bounds on M_{5} at 95% level

Statistical significance for the process pp $\rightarrow \mathbf{e}^{+} \mathbf{e}^{-}+\mathbf{X}$ as a function of 5-dimensional reduced Planck scale and cut on electron transverse momentum for $7 \mathrm{TeV}\left(\mathrm{L}=5 \mathrm{fb}^{-1}\right)$ and $8 \mathrm{TeV}\left(\mathrm{L}=20 \mathrm{fb}^{-1}\right)$

No deviations from the CM were seen at the LHC

$$
\begin{aligned}
& \mathbf{M}_{5}>6.35 \mathrm{TeV} \quad \text { (A.K., 2013) } \\
& \text { (for } 7+8 \mathrm{TeV} \\
& \left.L=5 \mathrm{fb}^{-1}+20 \mathrm{fb}^{-1}\right)
\end{aligned}
$$

LHC search limits on M_{5} :
8.95 TeV
(for $13 \mathrm{TeV}, L=30 \mathrm{fb}^{-1}$)

