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1. Introduction
The compensation approach was elaborated by Nikolai Niko-
laevich Bogoliubov in application to problems of the statistical
mechanics.
N.N. Bogoliubov, Sov.Phys.Uspekhi, 67, 549 (1959).
N.N. Bogoliubov, Physica Suppl,(Amsterdam),26, 1(1960).
N.N. Bogoliubov, Quasi-averages in problems of the statistical
mechanics, initially Preprint JINR -781, (1961) (also published
in several books and in Complete Works by N.N. Bogoliubov).
In the following works the compensation approach was applied
to a problem of a spontaneous generation of effective interac-
tions in gauge theories of the Standard Model.
1.B.A.A., TMF, v.140, 367 (2004);
2.B.A.A., Jad.Phys., v. 69, 1621 (2006);
3.B.A.A.,M.K.Volkov,I.V.Zaitsev,Int.J.Mod.Phys.A, v. 21, 5721
(2006).
4.B.A.A., Eur.Phys.J.C, v. 61 , 51 (2009).
5.B.A.A.,I.V.Zaitsev, Int. J. Mod. Phys. A, v. 26 , 4945 (2011).
6.B.A.A.,I.V.Zaitsev, Phys.Rev.D, v. 85 :093001 (2012).
7.B.A.A.,I.V.Zaitsev, Int.J.Mod.Phys.A, v. 28: 1350127 (2013).
8.B.A.A.,I.V.Zaitsev, arXiv: 1404.3032 (2014).



May 23, 2014 16:24 WSPC/INSTRUCTION FILE arbSuz1

Effective interactions in the Standard Model 3

The talk is mostly based on the last work and also uses results
from all these publications.
In particular, papers [4-6] deal with an application of the ap-
proach to the electro-weak interaction and a possibility of a
spontaneous generation of effective anomalous three-boson in-
teraction of the form

−G

3!
F εabc Wa

µν Wb
νρ Wc

ρµ ; (1)

Wa
µν = ∂µW

a
ν − ∂νW

a
µ + g εabcW

b
µW

c
ν .

with uniquely defined form-factor F(pi), which guarantees effec-
tive interaction (1) acting in a limited region of the momentum
space. It was done in the framework of an approximate scheme,
which accuracy was estimated to be ' (10− 15)% [1]. Would-
be existence of effective interaction (1) leads to important non-
perturbative effects in the electro-weak interaction. It is usually
called anomalous three-boson interaction and it is considered for
long time on phenomenological grounds (Hagiwara et al.). Our
interaction constant G is connected with conventional definitions
in the following way

G = − g λ

M2
W

; (2)
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where g ' 0.65 is the electro-weak coupling. The best limitations
for parameter λ read

λ = −0.016+0.021
−0.023; −0.059 < λ < 0.026 (95%C.L.). (3)

Solution of the analogous compensation procedure in QCD
correspond to g(z0) = 3.8. For the electro-weak interaction we
have [6]

g(z0) = 0.60366 ; z0 = 9.6175 ; |λ| = 2.88 · 10−6 . (4)

Here z0 is a dimensionless parameter, which is connected with
value of a boundary momentum, that is with effective cut-off Λ
according to the following definition [6]

2G2 Λ4

1024 π2 =
g2 λ2 Λ4

512 π2 M4
W

= z0 . (5)

It is instructive to present in Fig. 1 the behavior of form-factor
F(p,−p,0) in dependence on momentum p, where

z =
G2 p4

512 π2 ; (6)

and F(z) = 0 for z > z0.
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Fig. 1. The behavior of the form-factor for the electro-weak theory.

As a rule the existence of a non-trivial solution of a compen-
sation equation impose essential restrictions on parameters of a
problem. Justhe example of these restrictions is the definition
of coupling constant g(z0) in (4).
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It is advisable to consider other possibilities for spontaneous
generation of effective interactions and to find out, which restric-
tions on physical parameters may be imposed by an existence
of non-trivial solutions. In the present work we consider possi-
bilities of definition of important physical parameters: mixing
angles and mass ratios of elementary constituents of the Stan-
dard Model.

2. A model for mass relations of quarks and

leptons

Following the compensation approach let us formulate the com-
pensation equations for would-be four-fermion interaction of two
types of quarks and two leptons, that is we consider one genera-
tion of fundamental fermions. For the simplicity we call them
”u”, ”d”, ”e” and ”ν”, which in the standard way are repre-
sented by their left ψL and right ψR components. We admit initial
masses for all participating fermions to be zero and we will look
for possibility of them to acquire masses mi, i = 1, ...4 respectively
due to interaction with scalar Higgs-like composite field.
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Then let us consider a possibility of spontaneous generation
of the following interaction

LF
eff = G1ūL uR ūR uL + G2d̄L dR d̄R dL + G4ēL eR ēR eL+

G3(ūL uR d̄R dL + d̄L dR ūR uL) + G5(ūL uR ēR eL + ēL eR ūR uL)+

G6(ēL eR ūR uL + ēR eL ūL uR) + G7 ν̄L νR ν̄R νL+ (7)

G8(ν̄L νR d̄R dL + d̄L dR ν̄R νL) + G9(ν̄L νR ūR uL + ūL uR ν̄R νL)+

G10(ν̄L νR ēR eL + ēL eR ν̄R νL).

Here all coupling constants Gi have dimension of the inverse
mass squared M−2. Now we would like to find out, if the four-
fermion interaction (10) could be spontaneously generated. In
doing this we again proceed with the add-subtract procedure

L = L0 + Lint ;

L0 =
∑

u,d

q̄(x)(ı∂αγα −m)q(x) +
∑
e,ν

l̄(x)(ı∂αγα −m)l(x)− LF
eff ; (8)

Lint = L0int + LF
eff ;

Where L0int is an initial interaction Lagrangian. Then we have to
compensate the undesirable term Leff in the newly defined free
Lagrangian.
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The relation, which serve to accomplish this goal, is called
compensation equation. Necessarily we use approximate form of
this equation. In diagram form the compensation equation for
three fermions participating the interaction in one-loop approx-
imation is presented in Fig. 2. Let us define effective cut-off Λ
in integrals of equation (10). We shall see below, that Λ may
be defined in the course of solution of compensation equations.
With account of this definition we introduce the following di-
mensionless variables

y1 =
G1 Λ2

8 π2 ; y2 =
G2 Λ2

8π2 ; y3 =
G3 Λ2

8 π2 ;

z1 =
G4 Λ2

8 π2 ; z2 =
G7 Λ2

8π2 ; z3 =
G10 Λ2

8 π2 ; (9)

x1 =
G5 Λ2

8 π2 ; x2 =
G9 Λ2

8π2 ; x3 =
G6 Λ2

8 π2 ;

x4 =
G8 Λ2

8 π2 ;

ξ1 =
m2

m1
; ξ2 =

m3

m1
; ξ3 =

m4

m1
.

Then we consider scalar bound state consisting of all possible
fermion-antifermion combinations ūu, d̄d, ēe and ν̄ν.
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Fig. 2. Diagram representation of the compensation equation for spontaneous
generation of interaction (10). Notations of quarks and lepton are shown by
corresponding lines.



May 21, 2014 12:33 WSPC/INSTRUCTION FILE arbSuz1

On a possibility to calculate mass ratios and the fine structure constant 9

Fig. 2. Diagram representation of the compensation equation for spontaneous
generation of interaction (10). Notations of quarks and lepton are shown by
corresponding lines.
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The corresponding set of Bethe-Salpeter equations is shown in
Fig. 3. In this way we come to the following set of ten compensa-
tion equations presented in Fig. 2 and four Bethe-Salpeter equa-
tions shown in Fig. 3. Let us note, that in Fig. 3 we present also
wouldbe contributions of gage bosons exchanges, which in the
present calculations are not taken into account. Note also, that
terms with factor A arise from vertical diagrams in Fig. 2. Let us
remind, that the sign minus before linear terms in compensation
equations is connected with opposite signs of terms correspond-
ing to effective interactions in the new free Lagrangian and in
the new interaction Lagrangian.
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−y1 + Ay2
1 + 3(y2

1 + y2
3) + x2

1 + x2
2 = 0 ;

−y2 + Ay2
2 ξ2

1 + 3(y2
2 + y2

3) + x2
3 + x2

4 = 0 ;

−y3 + Ay2
3 ξ1 + 3y3(y1 + y2) + x1 x3 + x2x4 = 0 ;

−z1 + Az2
1 ξ2

2 + 3 (x2
1 + x2

3) + z2
1 + z2

3 = 0 ;

−z2 + Az2
2 ξ2

3 + 3 (x2
2 + x2

4) + z2
2 + z2

3 = 0 ;

−z3 + Az2
3 ξ2 ξ3 + 3 (x1 x2 + x3 x4) + z1z3 + z2z3 = 0 ;

−x1 + Ax2
1 ξ2 + 3(x1y1 + x3y3) + x1z1 + x2z3 = 0 ; (10)

−x2 + Ax2
2 ξ3 + 3(x2y1 + x3y3) + x1z1 + x2z3 = 0 ;

−x3 + Ax2
3 ξ1 ξ2 + 3(x1y3 + x4y3) + x1z3 + x2z2 = 0 ;

−x4 + Ax2
4 ξ1ξ3 + 3(x2y3 + x4y2) + x3z3 + x4z2 = 0 ;

A =
m2

1

4Λ2 ln
Λ2

m̄2 ;
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Fig. 3. Diagram representation of the Bethe-Salpeter equation for scalar bound
state, included in set of equations (11). Notations of quarks and lepton are
shown by corresponding lines. Contributions of gauge bosons exchanges (the
last diagrams in each equation are not taken into account yet).
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Fig. 3. Diagram representation of the Bethe-Salpeter equation for scalar bound
state, included in set of equations (11). Notations of quarks and lepton are
shown by corresponding lines. Contributions of gauge bosons exchanges (the
last diagrams in each equation are not taken into account yet).
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1

B
= 3(y1 + ξ1 y3) + ξ2x1 + ξ3x2;

ξ1

B
= 3(y3 + ξ1 y2) + ξ2 x3 + ξ3x4; (11)

ξ2

B
= 3(x1 + ξ1 x3) + ξ2 z1 + ξ3z3;

ξ3

B
= 3(x2 + ξ1 x4) + ξ2 z3 + ξ3z2;

B = 1 +
m2

0

2Λ2 ln
Λ2

m̄2 ;

where m0 is the bound state mass and m̄ is an average mass of
participating fermions. Let us comment the appearance of mass
parameters ξi in terms, corresponding to vertical diagrams in
Fig. 2. Due to the orthogonality of matrices

1 + γ5

2
;

1− γ5

2
; (12)

terms containing q̂ cancel and we are left only with mass terms
in spinor propagators. Introduction of the average m̄, instead
of substituting in proper places different masses mi, means of
course an approximation.
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However due to logarithmic dependence on this parameter,
this approximation seems to be reasonable. Factor A has to be
very small and factor B has to be close to unity, because Λ À mi.
Ten equations (10) correspond to the set of compensation equa-
tions, while four equations (11) represent the Bethe-Salpeter
equations. Let us remind, that after performing the compensa-
tion procedure, which means exclusion of four-fermion vertices
in the newly defined free Lagrangian, we use the resulting cou-
pling constants in the newly defined interaction Lagrangian with
the opposite sign. The appearance of ratios ξi in Bethe-Salpeter
part (11) of the set presumably needs explanation. We assume,
that the scalar composite state, which in our approach serves as
a substitute of the elementary Higgs scalar, consists of all exist-
ing quark-antiquark and lepton-antilepton pairs ψ̄L ψR (not only
of heavy quarks Ψ̄L ΨR as in work 5. Then coupling of this scalar
with different fermions will give their masses according to well
known relation

ga =
gma√
2MW

. (13)

On the other hand, Bethe-Salpeter wave functions are propor-
tional to coupling constants ga, where a is just the constituent
particle.
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Thus we change a ratio of coupling constants by a ratio of
corresponding masses ξi.

Now let us consider solutions of set (10, 11). First of all let us
remind, that parameter A is very small, so we look for solutions,
which are stable in the limit A → 0. We also will consider only
real solutions, because our variables just correspond to physi-
cal observable quantities. Namely, we have for A = 0.0001 the
following solutions

y1 = 0.12500, y2 = y1, y3 = −y1,

z1 = y1, z2 = y1, z3 = −y1,

x1 = y1, x2 = −y1, x3 = −y1, x4 = y1, (14)

ξ1 = −1, ξ2 = 1, ξ3 = −1, B = 1.00001.

y1 = 0.12500, y2 = y1, y3 = −y1,

z1 = y1, z2 = y1, z3 = y1,

x1 = y1, x2 = y1, x3 = −y1, x4 = −y1, (15)

ξ1 = −1, ξ2 = 1, ξ3 = 1, B = 1.00001.
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y1 = 0.24999, y2 = 0.33333, y3 = 0,

z1 = 0.24999, z2 = 0.56468, z3 = −0.38570,

x1 = −0.24999, x2 = x3 = x4 = 0, (16)

ξ1 = 0.86603, ξ2 = −1, ξ3 = 0, B = 1.00003.

y1 = 0.24999, y2 = 0.33333, y3 = 0,

z1 = 0.24999, z2 = 0.99998, z3 = 0,

x1 = −0.24999, x2 = x3 = x4 = 0, (17)

ξ1 = 0, ξ2 = 1, ξ3 = 0.5, B = 1.000025.

y1 = 0.33332, y2 = 0, y3 = 0,

z1 = 0.24999, z2 = 0.99998, z3 = 0,

x1 = x2 = x3 = x4 = 0, (18)

ξ1 = 0, ξ2 = ξ3 = 0.57735, B = 1.000033.

y1 = 0.33332, y2 = 0.057288, y3 = 0,

z1 = 0.26344, z2 = 0.56470, z3 = −0.38570,

x1 = x2 = 0, x3 = 0.12285, x4 = −0.17986, (19)

ξ1 = ξ2 = ξ3 = 0, B = 1.00003.
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y1 = 0.29077, y2 = 0.29077, y3 = −0.04256,

z1 = 0.25534, z2 = 0, z3 = 0,

x1 = 0.17801, x2 = x4 = 0, x3 = 0.17801, (20)

ξ1 = 1, ξ2 = 1.4344, ξ3 = 0, B = 1.00003.

y1 = 0.19313, y2 = 0.18758, y3 = 0.14295,

z1 = 0.857858, z2 = 0, z3 = 0,

x1 = −0.14116, x2 = x4 = 0, x3 = 0.14393, (21)

ξ1 = 1.069, ξ2 = 0.26728, ξ3 = 0, B = 1.00002.

Of course, there is a temptation to confront these solutions
with the existing generations of quarks and leptons. Let us note,
that the first three solutions (14, 15, 16) contain mass ratios ξi
with negative signs, that is quite unnatural for fermions enter-
ing to one generation. In solutions (17, 18) there is no place for
massless neutrino. However, these solutions may be tentatively
considered in the framework of an option of wouldbe new gener-
ations with heavy neutrinos. For the moment, the most suitable
ones are the three last solutions (19, 20, 21). All these solutions
have nonnegative parameters ξi and at least one lepton being
massless, that might be a neutrino.
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The solution (19) gives one (the first) fundamental fermion
(quark) being much heavier, than three others, that reminds
situation of the third generation with the very heavy t quark.
The solution (20) gives charged lepton mass approximately the
same as those of quarks, that may hint the situation in the second
generation with approximately equal masses of the muon and of
the s-quark. The solution (21) gives two different masses for
the quark pair, while the wouldbe charged lepton has the mass
approximately four times smaller than that of the first quark.
This resembles situation for the first generation. Indeed, let us
take for the electron mass its physical value me = 0.51MeV.
Then we have from (21)

me = 0.51MeV;

mu =
me

ξ2
= 1.90MeV; (22)

md =
me ξ1

ξ2
= 2.04MeV.

The wouldbe u-quark mass fits into error bars of its definition,
while the wouldbe d-quark mass is rather lighter than its phys-
ical value. Note, that in our estimates we have not taken into
account the phenomenon of mixing of down quarks (d, s, b).
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Of course, the similarity is rather reluctant and there is no over-
all explicit agreement with the real situation. Maybe one could
move further with an application of a next approximation, which
presumably needs a consideration of the Bethe-Salpeter equa-
tions with account of gauge interactions contributions, that is
with account of a gluon exchange and of electroweak bosons ex-
changes. These exchanges are schematically drawn in Fig. 3. The
problem of an adequate formulation of the approximation needs
a special investigation. Nevertheless, even a possibility to define
ratios of the fundamental masses in the compensation approach
is of a doubtless interest. We would also draw attention to the
important point, that for all solutions parameter B is close to
unity, just as we have expected. With decreasing of parameter
A, which is proportional to ratio squared of the mass of the first
quark and cut-off Λ, parameter B tends to unity exactly.
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Let us estimate also order of magnitude of mixing angles be-
tween generations. For the purpose we introduce in effective
interaction (7) additional terms, corresponding to the wouldbe
s, d mixing.

∆L = G′
1

(
(̄s′R d′L + d̄′R s′L)d̄′Ld

′
R + (̄s′L d′R + d̄′L s′R)d̄′Rd′L

)
+

G′
2

(
(̄s′R d′L + d̄′R s′L)̄s′Ls

′
R + (̄s′L d′R + d̄′L s′R)̄s′Rs′L

)
+

G′
3(̄s

′
Ld

′
Rs̄′Rd′L + d̄′Rs′Ld̄

′
Ls
′
R) + G′

4(̄s
′
Ld

′
Rd̄′Rs′L + s̄′Rd′Ld̄

′
Ls
′
R)+ (23)

G′
5(d̄

′
Ld

′
Rs̄′Ls

′
R + d̄′Rd′Ls̄

′
Rs′L);

y12 =
G′

1 Λ2

8 π2 ; y32 =
G′

2 Λ2

8π2 ; y52 =
G′

3 Λ2

8 π2 ;

y62 =
G′

4 Λ2

8 π2 ; t32 =
G′

5 Λ2

8 π2 .

We have also mixing in mass terms of the two spinor fields

−ξ1d̄
′d′ + ξ4s̄

′s′ − ξ6(̄s
′d′ + d̄′s′) ; (24)

where, as well as in expression (23), d′, s′ are mixed states of
physical d and s

d′ = cos φd + sin φ s ; s′ = − sin φd + cos φ s ; (25)

and φ is the well known Cabibbo angle.
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Now we have in addition to parameters in (23) parameter y2
from (9), which corresponds to term d̄dd̄d and we also introduce
the analogous parameter y21, corresponding to term s̄ss̄s. These
variables will be fixed by results (19 - 21). We now neglect all
other transitions but those between d and s states and thus we
have the following set of equations

−y12 + Ay12 + 3(y12y2 + y32t32 + y52y12 + y62y12) = 0 ;

−y32 + Ay32 + 3(y12t32 + y32y21 + y52y32 + y62y32) = 0 ;

−y52 + Ay52 + 3(y2
12 + y2

32 + 2y52y62) ;

−y62 + Ay62 + 3(y2
12 + y2

32 + y2
52 + y2

62) ;

−t32 + At32 + 3(y2t32 + y21t32 + y12y32) ; (26)
ξ1

B
= 3(y2ξ1 + t32ξ4 + 2y12ξ6) ;

ξ4

B
= 3(t32ξ1 + y21ξ4 + 2y32ξ6) ;

ξ6

B
= 3(y12ξ1 + y32ξ4 + (y52 + y62)ξ6) .
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Here

Ay12 = A(y2y12ξ
2
1 + y2

62ξ
2
4 + y12(y52 + y32)ξ1ξ4 + (2y2

12 + y2(y52+

t32))ξ1ξ6 + 4y12y62ξ4ξ6 + (y2(y32 + y62) + y12(y12 + t32))ξ
2
6),

Ay32 = A(y62y12ξ
2
1 + y21y32ξ

2
4 + y32(y52 + t32)ξ1ξ4 + (y62y32+

y21y12 + y32t32 + y32y52)ξ
2
6 + (y62y52 + 2y32y12 + y62t32)ξ1ξ6+

(2y2
32 + y21t32 + y21y32)ξ4ξ6),

Ay52 = A(y2
12ξ

2
1 + y2

32ξ
2
4 + 2t32y52ξ1ξ4 + (t2

32 + y2
52 + 2y32y12)ξ

2
6+

2(y12y52 + y12t32)ξ1ξ6 + 2y32(y52 + t32)ξ4ξ6),

Ay62 = A(y2y62ξ
2
1 + y21y62ξ

2
4 + 2y32y12ξ1ξ4 + (y2

62 + 2y32y12+ (27)

y21y2)ξ
2
6 + 2(y62y12 + y32y2)ξ1ξ6 + 2(y32y62 + y21y12)ξ4ξ6),

At32 = A(y2
12ξ

2
1 + y2

32ξ
2
4 + (t2

32 + y2
52)ξ1ξ4 + 2(t32y52 + y12y32)ξ

2
6+

2y12(y52 + t32)ξ1ξ6 + 2y32(y52 + t32)ξ4ξ6).

The set has many solutions, mostly the complex ones. We con-
sider only real solutions and choose such ones, which allow phys-
ical interpretation. Thus we shall consider several examples and
postpone for future studies the problem of an explanation, why
just the solutions being considered correspond to real physics.
Maybe this problem is connected with properties of a stability
of solutions.
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Fixing values for y2 and y21 from results (20, 21) and
value A we obtain eight equations for eight variables:
y12, y32, y52, y62, t32, B, ξ1/ξ6, ξ4/ξ6. Let us check if there will
be a reasonable mixing of solutions (20, 21) that is be-
tween the first two generations according to our guess. With
y2 = 0.18758, y21 = 0.29077, A = 0.000005, ξ6 = 1 we have the fol-
lowing solution

y12 = 0, y32 = 0.078663, y52 = y62 = 0.021281,

t32 = 0, ξ1 = 0, ξ4 = 3.69641, (28)

B = 1.00001 .

It is easy to see, that parameters ξ1,4 give values of a mixing
angle s and a ratio of masses R according to the following set of
equations

s = sin φ ; R =
ms

md
;

s = (
√

x2 + 1− x)
√

1− s2, R =
y +

√
x2 + 1√

x2 + 1− y
;

x =
ξ4 − ξ1

2
, y =

ξ1 + ξ4

2
. (29)
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For data (28) we have the following solution

s = 0.2454, R = 15.6. (30)

Solution (30) may be confronted with real situation with (d, s)
mixing, because mixing angle is close to actual Cabibbo angle
and mass ratio R = ms/md is close to its actual value

sin φc = 0.225 ;
ms

md
= R = 17 − 22 . (31)

Then let us consider a possible mixing of the first and the
third generations, that is of solutions (21, 19), where we con-
sider mixing of corresponding up quarks (wouldbe u and t).
With y2 = 0.19313 from solution (21), y21 = 0.333322 from so-
lution (19), A = 0.0000000026, ξ6 = 1 we have the following solu-
tion

y12 = −9.78 · 10−6, y32 = 1.87 · 10−14, y52 = 0.166655,

y62 = 0.166667, t32 = 4.9 · 10−12, ξ1 = −0.00014,

ξ4 = 280.116, B = 1.00003 . (32)

According to (29) we have

s = 0.00357, R = 75515.3. (33)
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Solution (33) may be confronted with wouldbe (u, t) mixing with
the following actual parameters

Vtd = 0.0035+0.00015
−0.00014 ; mt = (173.07± 0.52± 0.72)GeV ; (34)

while from (33) and value of mu we have

mt = Rmu = R · (0.0023+0.0007
−0.0005)GeV =

(
174+55

−39

)
GeV .

We have to draw attention to strong dependence of the last result
from value of parameter A. For A → 0 mass ratio in (33) R →∞.
We have just chosen value A for central value of mt to be close
to its experimental value. We see that in this case the mixing
parameter s (33) is also quite close to the central value in (34).
In any case for sufficiently small A a solution give very large
ratio R and small mixing parameter s ' 0.004, that may provide
explanation why the t quark is such heavy. On the other hand,
(d, s) mixing parameters (30) depend on value solution (30) quite
weakly and relations (30) are stable in limit A → 0.
Let us also study if solution (30) is consistent with value of muon
mass mµ. First of all let us write down the table value of the d-
quark mass

md = 4.8+0.5
−0.3 MeV . (35)
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Then with result (30) we obtain the s-quark mass

ms = Rmd = 74.9+7.8
−4.7 MeV . (36)

According to solution (20)

mµ = 1.4344ms = 107.4+11.2
−6.7 MeV ; (37)

that perfectly agrees the well known value mµ = 105.66MeV.
The examples being just considered shows possibility of def-

inition of mass ratios and of some mixing angles in the com-
pensation approach. There are also other mixing angles in the
Standard Model, first of all, the Weinberg angle θW in W0, B
mixing. In the next section we consider a possible way of calcu-
lation of this important parameter following the same approach.
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3. Weinberg mixing angle and the fine structure

constant
Let us demonstrate a simple model, which illustrates how the
well-known Weinberg mixing angle could be defined. Let us con-
sider a possibility of a spontaneous generation of the following
effective interaction of electroweak gauge bosons

LW
eff = G1W

a
µW

d
µ Wa

ρσW
d
ρσ + G2W

a
µW

a
µW

b
ρσW

b
ρσ+

G3 Wa
µW

a
µBρσBρσ + G4 ZµZµW

b
ρσW

b
ρσ+

G5 ZµZµBρσBρσ. (38)

where we maintain the residual gauge invariance for the electro-
magnetic field. Here indices a,d correspond to charged W-s, that
is they take values 1, 2, while index b corresponds to three com-
ponents of W defined by the initial formulation of the electro-
weak interaction. Let us remind the well-known relation, which
connect fields W0, B with physical fields of the Z boson and of
the photon

W0
µ = cos θW Zµ + sin θW Aµ;

Bµ = − sin θW Zµ + cos θW Aµ. (39)
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Interactions of type (38) were earlier introduced on phenomeno-
logical grounds in works by G. Belanger et al.. Let us introduce
an effective cut-off Λ in the same way as we have done in the
previous section and use for definition of Λ relation (5). Here we
shall proceed just in the same way as earlier. Then let us consider
a possibility of a spontaneous generation of interaction (38). In
doing this we again proceed with the add-subtract procedure,
which was used throughout applications of the compensation ap-
proach. Now we start with usual form of the Lagrangian, which
describes electro-weak gauge fields Wa and B

L = L0 + Lint ;

L0 = − 1

4

(
Wa

0µν Wa
0µν

) − 1

4

(
Bµν Bµν

)
; (40)

Lint = −1

4

(
Wa

µν Wa
µν −Wa

0µν Wa
0µν

)
. (41)

Wa
0µν = ∂µW

a
ν − ∂νW

a
µ; Bµν = ∂µBν − ∂νBµ.

and Wa
µν is the well-known non-linear Yang-Mills field of W-

bosons.
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Then we perform the add-subtract procedure of expres-
sion (38)

L = L′0 + L′int ;

L′0 = L0 − LW
eff ; (42)

L′int = Lint + LW
eff . (43)

Now let us formulate compensation equations. We are to de-
mand, that considering the theory with Lagrangian L′0 (42), all
contributions to four-boson connected vertices, corresponding
to interaction (38) are summed up to zero. That is the unde-
sirable interaction part in the would-be free Lagrangian (42) is
compensated. Then we are rested with interaction (38) only in
the proper place (43) We have the following set of compensa-
tion equations, which corresponds to diagrams being presented
in the first six rows of Fig. 4
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−x1 + x2
1 = 0 ;

−x2 + 2x2
2 + 2x1x2 + (1− a2)x3x4 +

a2 x2x4 = 0 ;

−x3 + x1x3 + 2x2x3 + a2 x2 x5 +

(1− a2)x3x5 = 0 ; (44)

−x4 + x1x4 + 2x2x4 + a2 x4x5 = 0 ;

−x5 + 2x3x4 + a2 x4 x5 + (1− a2)x2
5 = 0 ;

xi =
3Gi Λ

2

64 π2 ; a = cos θW .

Here a = cos θW. Factor 2 in several terms of equations here cor-
responds to sum by weak isotopic index δa

a = 2, a = 1, 2.
Then following the reasoning of the approach we assume, that

the Higgs scalar corresponds to a bound state consisting of a
complete set of fundamental particles. Note, that in work 5

we have considered only the heaviest particle t quark as the
main constituent of the Higgs scalar. Here we are to include the
electro-weak bosons. There are two Bethe-Salpeter equations for
this bound state, because constituents are either Wa Wa or ZZ.
These equations are presented in the last two rows of Fig. 4.
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Fig. 4. Diagram representation of set (44) (the first five equations) and (45)
(the two last ones). Simple line represent W-s, dotted lines represent B and
lines, consisting of black spots, represent Z. Double lines represent the Higgs
scalar.
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In approximation of very large cut-off Λ these equations have
the following form

x1 + (2 + a)x2 +
1− a2

a
x3 + β = 1 ; (45)

(2 + a)x4 +
1− a2

a
x5 +

β

a
=

1

a
.

Here we introduce parameter β, which describes wouldbe ad-
ditional contributions. We consider as physical solutions those
with very small β. Now we look for solutions of set (44, 45)
for variables xi, a, β. Of course, there is the trivial solution:
all xi = 0, β = 1. However there are also non-trivial solutions.
Namely, there are the the following two ones with x1 = 1

x2 = 0 ; x3 = 0.729625 ; x4 = 0 ; x5 = 0 ; (46)

β1 = 1 ; β2 =
0.729625 (a− 1)

a
;
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for any a, and the following three ones with x1 = 0

x2 = 0 , x3 = 3.070337 , x4 = 0 , x5 = 3.61378 ,

a = 0.8504594 , β = −5.06 · 10−16 ; (47)

x2 = 0.48772 , x3 = 0 , x4 = 1.2654 , x5 = 0 ,

a = 0.33801 , β = −1.2 · 10−5 ;

x2 = 0.5 , x3 = 1.09555 , x4 = 0 , x5 = 0 ,

a = −0.75556 , β = 1 .

Very small β are appropriate for the first solution of (47) with
β ' −5 · 10−16 and for the second one with β ' −1.2 · 10−5. Note,
that for solutions (46) smallness of β is achieved only for the
second one with a → 1, that is in an absence of the mixing. The
solution with the smallest β gives for the mixing parameter

sin2 θW = 1− a2 = 0.27672 . (48)

This value corresponds to scale Λ (5), which is defined by param-
eter z0. At this scale the electroweak coupling according to (4)
is the following

αew(z0) =
g(z0)

2

4 π
= 0.028999 . (49)
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Then we obtain the electromagnetic coupling at the same scale

α(z0) = αew(z0) sin2 θW(z0) = 0.0080244 . (50)

With the well-known evolution expression for electromagnetic
coupling we have for six quark flavors (Λ À MW)

α(z0) =
α(MZ)

1− 5α(MZ)
6π ln

[
Λ2

M2
Z
]

= 0.0080244 . (51)

This gives for value Λ from expression (5) with an account of (4)

α(MZ) = 0.007719 . (52)

to be compared with experimental value 18

α(MZ) = 0.0077562± 0.0000012. (53)

Of course, set of equations (44, 45) is approximate. It quite may
be, that with an account of necessary corrections the agreement
of the result with experimental number (53) will be not such
indecently good. For example, provided we take the value of
boundary momentum Λ being an order of magnitude up and
down of that defined by relations (4), we have

α(MZ)up = 0.00765 ; α(MZ)down = 0.00779 . (54)
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The second solution gives mach larger value for sin2 θW ' 0.89. As
a result this leads to α(MZ) ' 0.0235, that is three times more,
than (52, 53). Now we have one solution (52) being in agreement
with actual physics and another one being in evident disagree-
ment. Which one is to be used?

The answer is connected with the problem of a stability of
solutions (47). The stability in the model is defined by sum of
vacuum averages

1

4
< Wa

µν Wa
µν > +

1

4
< Bµν Bµν > . (55)

A calculation of these vacuum averages even in the first approx-
imation needs knowledge of explicit form-factors in effective in-
teractions (38). To achieve this knowledge one has to perform
the next step in a formulation and a solution of compensation
equations, namely, it is necessary to take into account two-loop
terms in compensation equations in analogy to works [2,3]. This
procedure is to be considered elsewhere. For the moment we may
only state, that one of two possible solutions gives satisfactory
value for fine structure constant α(MW). On the other hand, let
us note the following.
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Provided the form-factor will be qualitatively the same as
is presented in Fig. 1, i.e. being negative for large momenta,
preliminary estimates show, that just the solution with value
α(MW) (52) is more stable than other one. Maybe it is worth
mentioning, that the preferable solution contains only combina-
tion BµνBµν in effective interaction (38), while the solution with
large α(MW) on the contrary contains only combination Wb

µνW
b
µν.

The results being demonstrated can not be regarded as fi-
nally decisive ones and are rather indications of how things
might occur. However in view of a fundamental importance of a
possibility to define parameters of the Standard Model, we do
present these considerations. Additional arguments on behalf of
our point of view are presented in the subsequent section.
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4. Conclusion
Possible way of determination of fundamental fermion mass ra-
tios, of mixing angles in the Cabibbo-Kobayashi-Maskawa ma-
trix and of the Weinberg mixing angle, which is proposed in the
work needs further studies, especially in respect to the next ap-
proximations. As well problems of stability, which might choose
appropriate solutions, need thorough consideration. Thus we can
not consider results being described here as final ones. They are
just examples, which illustrate how things may occur. In any
case the examples being considered in the present work show,
that a consideration of effective interactions in the compensation
approach might lead to a determination of fundamental param-
eters of the Standard Model including the Weinberg mixing an-
gle, mass ratios of fundamental particles and the Cabibbo angle.
Remind, that a result being obtained above give quite a satis-
factory value for the most important physical parameter – the
fine structure constant α. We would also draw attention to an
appearance of very small numbers in solutions being considered.
E.g. solution (47) contains parameter β ' 5 · 10−16. This might
be useful in consideration of problems of hierarchy (Gildener,
Witten).
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Result (33), which gives very large mass ratio of the order of
magnitude 105 might be also important in respect to these prob-
lems.
Let us emphasize, that the possibility of an adequate definition
of the fundamental parameters of the Standard Model, is alter-
native to the option of anthropic principle (see, e.g. review (see,
e.g. Hogan), which assumes multiplicity of Universes. The main
foundation of this postulate is just an absence of any mechanism,
which could fix values of parameters of the Standard Model. The
number NSM of fundamental parameters of the Standard Model
including those, which are related to neutrinos, may be esti-
mated to be as large as 25. Then if each possible set of these
parameters corresponds to a really existing Universe, then the
power of the set of the totality of Universes is

(continuum)NSM

On the other hand, the existence of a human being, who is ca-
pable to observe the Nature and to try to understand Its laws,
is closely connected with actual values of the parameters of the
Standard Model.
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The properties of nuclei are connected with parameters defin-
ing low-energy strong interaction, that is the average strong cou-
pling at low energies ᾱs and light quark masses mu, md. The most
important parameters, which define the rich variety of organic
substances, which is inevitably necessary for the life generation
and evolution, are just the fine structure constant α and the
electron mass me. We have discussed in the present work pos-
sibilities for determination of all these fundamental parameters,
but strong coupling ᾱs, which was considered in work [7].

Thus the anthropic principle assumes, that we live in the
only Universe, which supplies conditions for an existence of
a human being, that is in the Universe with such parameters
α, ᾱs, mu, md, me, which we consider now as real physical ones.
All other Universes are deprived of an observer and so are prin-
cipally unobservable.

The approach, which we have used in the present work, pro-
vides a possibility to define at least some of these parameters.
Indeed, in work [7] we have obtained value of average strong
coupling in the low-momenta region ᾱs ' 0.85 in agreement with
its phenomenological value.
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As for other parameters, in the present work we just discuss
examples of definition of the fine structure constant and light
mass ratios in the framework of a spontaneous generation of ef-
fective interactions in the Standard Model. Relations (22, 30,
37, 52) can not be yet considered being decisive ones, but the
examples, which give these results, may serve as leading indica-
tions for further more detailed studies. In case of a realization of
the program, we would obtain an understanding of how values
of the fundamental parameters are fixed. Then the conception of
the uniqueness of the Universe might be established. That is, it
might be, that the observable Universe corresponds to the most
stable non-trivial solution of the Standard Model. The authors
do express the conviction, that a possible way to this goal is
connected with a phenomenon of a spontaneous generation of
effective interactions in the framework of the Standard Model.
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