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Non-local gravity Outline

Outline

• Problems to address

• Strings, SFT, p-adic strings and all of that

• F(�) physics and Ostrogradski instability

• Non-local gravity as GR completion

• Scalar reformulation of the non-local gravity

• Various limits

• Conclusion and open questions
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Non-local gravity Problems

Problems

• Cosmology and gravity do require graceful resolutions of singularities

• The major issues are initial singularity (Big Bang) and black hole
singularities

• The initial singularity problem is the problem with most cosmological
solutions because they hit a singularity approaching the time when
Universe had begun

• Standard ways to avoid an initial singularity meet the more serious
problem of ghosts

• These ghosts are related to higher derivatives in for example f (R)
models which may feature non-singular bouncing solutions

• Is there a way around?
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Non-local gravity Strings

Strings

• Strings step down from point-like objects and due to the presence of
infinite dimensional conformal symmetry group in 2 dimensions feature
a number of spectacular properties

• SFT is the non-perturbative description of strings. UV completeness
is one of the successes of SFT
Witten;Aref’eva,Medvedev,Zubarev;Preitschopf,Thorn,Yost;. . .

• Closed strings contain gravitation as one of the excitations and there-
fore we should in principle be able to find out the corrections to Ein-
stein’s gravity
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Non-local gravity Strings

Hint for finiteness

Low level example action from SFT:

L ∼ 1

2
ϕ(�−m2)ϕ +

λ

4

(
e−β�ϕ

)4

Simplest one-loop graph:

∼ em
2β

β
Ei2(m2β) =

1

β
+
(γ

2
+ ln(m2β)

)
m2 + O(m4)

Clearly UV divergences have gone.
Moreover, IR divergences are eliminated for massless fields as well.
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Non-local gravity F(�)

F(�) physics

The Lagrangian to understand is

S =

∫
dDx

(
1

2
ϕF(�)ϕ− λv(ϕ) + . . .

)
F(�) =

∑
n≥0

fn�n, i.e. it is an analytic function.

Canonical physics has F(�) = �−m2, i.e. L = 1
2ϕ�ϕ−

m2

2 ϕ
2

Ostrogradski statement says that higher (> 2) derivatives in the La-
grangian are equivalent to either ghosts or tachyons, or both.

F(�) = �−m2 + f2�2 is an example.

Anothe example: p-adic strings – an effective theory capturing proper-
ties of the SFT scattering amplitudes

L ∼ −1

2
ϕp
− �

2m2ϕ +
1

p + 1
ϕp+1

Vladimirov,Volovich,Zelenov,Dragovich,Khrennikov,Brekke,Freund,Olson, Witten,. . .
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Non-local gravity F(�)

F(�) physics (continued)

Terminology in (−,+,+,+) signature:

good: L = −1

2
∂µφ∂µφ−m2φ2

tachyon: L = −1

2
∂µφ∂µφ+m2φ2

ghost: L = +
1

2
∂µφ∂µφ−m2φ2

ghost and tachyon: L = +
1

2
∂µφ∂µφ+m2φ2

Tachyons can be treated by saying magic words about non-perturbative
minima while ghosts are really dangerous beasts.

Ghosts lead to a very rapid vacuum decay.
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Non-local gravity F(�)

F(�) physics (continued)

A word “finite” was not explicitly in the cited statement and it appears
to be crucial.

So, lets go “infinite”, which implicitly means create a non-local La-
grangian.

Two examples are in order

F(�) = (�−m2)e−β�

F(�) = e−β� −m2

Roots of an equation
F(σ) = 0

is the key to understand the physics here.

The ghost-free condition requires no more than one root σ exists.
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Non-local gravity NLG

Non-local gravity

The following Lagrangian describes the modification of gravity expected
from the closed String Field Theory.

S =

∫
d4x
√
−g

(
M 2

PR

2
+
λ

2
RF(�)R− Λ + . . .

)
here M 2

P =
1

8πGN

Biswas,Koivisto,Mazumdar,Siegel,Dragovich,Vernov,AK,. . .

One of the equations of motion (trace) is

λ

∞∑
n=1

fn

n−1∑
l=0

(
∂µ�

lR∂µ�n−1−lR + 2�lR�n−lR
)

+ 6λ�F(�)R−M 2
PR = −4Λ

The ghost-free condition in Minkowski space (Λ = 0) requires that the
following equation

6λσF(σ)−M 2
P = 0

has no more than one root σ, i.e.

6λσF(σ)−M 2
P = (κσ −m2)eγ(σ)
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Non-local gravity NLG

Non-local gravity (continued)

It is really not obvious but the above mentioned equation has the fol-
lowing explicit analytic solutions

• We need F ′(β) = 0 and some radiation

a = a0 cosh(βt) ⇒ H = β tanh(βt)

• We need F ′(β) = 0 and NO radiation

a = a0 exp

(
β

2
t2
)
⇒ H = βt

• We need some more special condition on F(σ) and NO radiation

a = a0t
p ⇒ H =

p

t

The two first solutions are the manifestly non-singular bouncing solu-
tions moreover with a de Sitter late time asymptotic for the first one
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Non-local gravity NLG

Raychaudhuri Equation

It is the essential tool to analyze the geodesics congruence

Rµνξ
µξν = κ

(
Tµνξ

µξν +
1

2
T + τµνξ

µξν +
1

2
τ

)
Here ξαξ

α = −1, T represents matter and τ represents the gravity modi-
fication
Rµνξ

µξν < 0 represents a regular space-time while normal matter (satis-
fying the strong energy condition ρ + 3p ≥ 0) in GR implies the opposite
sign. In fact this is a reflection of the Hawking-Penrose theorem.

Thus, first of all, we need the gravity modification.

The bouncing solutions above may be analyzed and shown to be com-
patible with the presence of normal matter.
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Non-local gravity Scalar NLG

Scalar reformulation of the non-local gravity

The previous action is equivalent to the following one

S =

∫
d4x
√
−g

(
M 2

PR

2
(1 + ψ)−M 4

P

8λ
ψ

1

F(�)
ψ + . . .

)

The conformal transform (1 + ψ)2 gµν = ḡµν allows us to decouple the grav-
ity and the scalar field

S =

∫
d4x
√
−ḡ
(
M 2

P

2
R̄−M 2

P

4

3

(1 + ψ)2
ḡµν∂µψ∂νψ −

M 4
P

8λ(1 + ψ)2
ψG(P)ψ

)
Here

G(P) =
1

F(P)
and P = (1 + ψ) �̄− ḡµν∂µψ∂ν

The ghost-free condition on ψ implies G(P) =
∑
n≥0

gnPn, i.e. it is an analytic

function.
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Non-local gravity Limits

Limits: KGB, Galileons, p-adic string, . . .

The limit of weak field

S =

∫
d4x
√
−ḡ
(
M 2

P

2
R̄+

(
3

2
− g1M

2
P

4λ

)
ψ�̄ψ − g0M

2
P

4λ
ψ2

−
∑
n>1

gnM
2
P

4λ

(
�̄ψ + (∂ψ)2

)
(�̄− ∂ρψ∂ρ)n−1ψ

)
Here we recognize KGB models and Galileon field theories.

The limit of large field

S =

∫
d4x
√
−ḡ
(
M 2

P

2
R̄− 3

2

(∂ψ)2

ψ2
−M 2

P

4λ

1

ψ
G
(
ψ�̄− ∂ρψ∂ρ

)
ψ

)
As a special limit we restore the p-adic string theory

S =

∫
d4x
√
−ḡ
(
M 2

P

2
R̄ +

κ

2
ψe−β�̄ψ

)
Almost finished work in progress

Thus, non-local theories can be considered as generating functionals
for other models on the market.
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Non-local gravity Conclusions

Conclusions and open questions

• Non-local generalization of Einstein’s gravity is presented with the aim
at resolving the initial singularity problem

• We were able to find out explicit analytic solutions representing the
non-singular bounce

• Scalar reformulation of the non-local gravity is presented and impor-
tant limits are discussed

• The current work in progress is to find explicitly the power spectrum
via quantization of perturbations in non-local models

Ben Craps, Tim De Jonckheere, AK

• Moreover there is a hope the latter formulation of the non-local gravity
will allow us to find explicitly new black objects
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Thank you for listening!


