
On AdS2 higher spin gravity

Konstantin Alkalaev

I.E.Tamm Theory Department, P.N.Lebedev Physical Institute

Based on arXiv:1311.5119
arXiv:1404.5330

Quarks 2014, Suzdal, Russia

Konstantin Alkalaev On AdS2 higher spin gravity



Outline

Lower dimensional gravity, the Jackiw-Teitelboim (JT) model.

Higher spin extension of the JT model: (in)finite dim cases

Metric-like versus frame-like formulation: a scalar/current duality

Conclusions and outlooks

Konstantin Alkalaev On AdS2 higher spin gravity



Lower dimensional gravity

The Einstein equations (Λ = 0)

Gmn ≡ Rmn −
1

2
gmnR = 0 ,

where Rmn is the Ricci, while R is the scalar: traces of the Riemann curvature Rmn,kl .

:= ⊕ ⊕ •

In general dimensions d ≥ 4: setting Gmn = 0 does not imply Rmn,kl = 0. The
space needs not to be flat.

For d = 2, 3: Weyl tensor vanishes identically, Cmn,kl = 0. The space is flat.

For d = 3:
εmαβ εnγρ Rαβ,

γρ = Gn
m

The Chern-Simons formulation of the 3d gravity.

For d = 2:
εαβ εγρ Rαβ,

γρ = R

so it follows that Gmn ≡ 0. What to do? The simplest diffeomorphism invariant
equation is

R = const .
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The Jackiw-Teitelboim gravity B. Barbashov, V. Nesterenko, A. Chervyakov’1979,
C. Teitelboim, ’1983, R. Jackiw’1984

R + Λ = 0

The theory is not Lagrangian (# variables > # equations). Adding a scalar field one
arrives at the particular dilaton gravity with the action for fields gmn(x) and φ(x)

SJT [φ, g ] =

∫
dx2√−g(R + Λ)φ

The properties:

no local PDoF

AdS2 and BH solutions (analogous to BTZ)

an effective theory for AdS2 × S2 near-horizon RN geometry

In the conformal gauge, the JT equation is the Liouville equation+ residual diff inv.

BF action for o(2, 1) ≈ sl(2,R) algebra of AdS2 isometry [TA,TB ] = εABCT
C :

(T. Fukuyama, K. Kamimura’ 1985)

SJT [Ψ,W ] =

∫
M2

ΨARA , RA = dW A − εABCWA ∧WC

The fields are 0-form Ψ = ΨAT
A and 1-form W = WAT

A taking values in the adjoint of
sl(2,R). The field equations are

RA
mn = 0 DmΨA = 0

The original JT equation ≡ RA=2
mn = 0.
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Higher spin extension of the JT model
HS generalization of the JT theory is straightforward in the BF form.

The proposition

AdS2 higher spin gravity ≡ BF theory with A-fields, where A = sl(N,R) Lie algebra.

A gauge algebra A = sl(N,R) in the higher spin basis:
N = 2: in this case A = sl(2,R) ≈ o(2, 1) = AdS2 global sym algebra

N ≥ 3:
T = TA1

⊕ TA1A2
⊕ · · · ⊕ TA1...AN−1

and there are N − 1 generators in total. Here,

TA1...Ak
: T(A1...Ak ) and ηMNTMNA3...Ak

= 0

is a spin-k generator: the adjoint of sl(2,R) ⊂ sl(N,R). One can check (the
principal embedding)

#T = N2 − 1 = #

N−1∑
k=1

TA1...Ak
=

N−1∑
k=1

(2k + 1)

The N = 3 example: here dim sl(3,R) = 8, there are 8 generators Tα, where
α = 1, ..., 8. In the higher spin basis

Tα = TA ⊕ T (AB)

Spin-2 generator TA with # = 3 and spin-3 generator TAB with # = 5.
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BF fields & BF action

BF gauge fields:
Zero-forms

Ψ(x) =

N−1∑
s=2

ΨA1...As−1 (x)TA1...As−1

One-forms

Wm(x) =

N−1∑
s=2

W
A1...As−1
m (x)TA1...As−1

Here, the expansion coefficients are the frame-like fields. Indices A = 0, 1, 2 and m = 0, 1.

BF higher spin action:

S[W ,Ψ] = g

N−1∑
s=2

∫
M2

ΨA1...As−1
RA1...As−1

Here,

R = dW + [W ,W ], δW = dξ + [ξ,W ] , δΨ = [ξ,Ψ] , δR = [ξ,R]

where a gauge parameter ξ is an A-valued zero-form.

The BF equations of motion:

RA1...As−1
mn = 0 , DmΨA1...As−1 = 0 , s = 2, ...,N .

where D = d + [W , ·] is the covariant derivative.
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A few comments

The JT gravity is embedded into BF HS gravity since sl(2,R) ⊂ sl(N,R)

Wm = W A
mTA + W AB

m TAB + ...

where all higher spin fields are set to zero.

A natural background is AdS2 spacetime.

BF HS theory is non-linear. One can linearize around the AdS background.

Our main conclusion: BF theory with A = sl(N,R) gauge algebra is interpreted as
dilaton higher spin gravity with (N − 1) partially-massless fields + dilaton fields.
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Interpretation of the model
Consider the gauge sector of our model: fields W

A1...As−1
m . Then, recall massless field

formulations in d-dimensional AdSd spacetime.

Massless HS fields: metric-like vs. frame-like (Fronsdal’1978, Vasiliev’2001)

Lorentz rank-s tensor fields — (i) totally symmetric, (ii) double traceless :

φm1...ms with the gauge symmetry δφm1...ms = ∇(m1
ξm2...ms )

These are metric-like (Fronsdal) higher spin fields. Consider now frame-like fields which
are one-forms taking values in a particular o(d − 1, 2) irrep

W
A1...As−1,B1...Bs−1
m with the gauge symmetry δWm = Dmξ

For d = 2: all W
A1...As−1,B1...Bs−1
m ≡ 0 except for s = 2 (gravity) case.

For d = 2 and s = 2: the Hodge duality W A1,B1
m = εA1B1CWmC .

Partially-massless HS fields (Deser, Nepomechie, Waldron, Zinoviev, Vasiliev, Skvortsov, 1983 - 2006)

Field W A
m belongs to

W
A1...As−1
m , where s = 2, 3, ...

In d dimensions these forms are partially massless gauge fields of the maximal depth.
Their metric-like form is given by φm1...ms with δφm1...ms = ∇(m1

· · ·∇ms )ξ + ....
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An infinite-dimensional extension

The gauge algebra sl(N,R) can be infinitely extended:

An infinite-dimensional HS algebra: Feigin’1988, Vasiliev’ 1989

Gauge algebra A = hs[ν], where ν = m(m + 1) for m ∈ R.

# fields = ∞ for a generic m. There are ∞ many HS generators

∞⊕
s=2

TA1...As−1

A field of each spin s enters in a single copy.

# fields <∞ for a m = 0, 1, 2, .... In this case A is not simple:

hs[ν]/I = sl(m + 2,R)

There are m + 2 spin-s fields, s = 2, ...,m + 2.

The action reads

Sν [Ψ,W ] = g

∫
M2

Tr
[
∆ν ΨR(W )

]
, where ∆ν − some projecting operator.
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Linearized dynamics

Fluctuations

W = W0 + Ω , Ψ = Ψ0 + Φ

where (W0,Ψ0) is a background. We choose W0 = AdS spacetime, Ψ0 = 0.

The linearized equations of motion for spin-s decoupled subsystems, s = 2, ...,N − 1:

D0ΦA1...As−1 = 0 and RA1...As−1 ≡ D0ΩA1...As−1 = 0

where D0 = d + W0 is the background covariant derivative, D0D0 = 0. The gauge
symmetry transformations read

δΩA1... As−1 = D0ξ
A1... As−1 and δΦA1... As−1 = 0

Lorentz decomposition

Spin-2 case: the zweibein and the spin connection

ΩA
m → eam ⊕ ωm A = 0, 1, 2 , a, ...,m... = 0, 1

Spin-s case: o(2, 1) fields decompose into o(1, 1) ⊂ o(2, 1) components

Ω
A1... As−1
m = ωm ⊕ ωa1

m ⊕ ωa1a2
m ⊕ ...⊕ ω

a1... as−1
m

R
A1... As−1
mn = Rmn ⊕ Ra1

mn ⊕ Ra1a2
mn ⊕ ...⊕ R

a1... as−1
mn
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Two different ways to reduce BF system
Let us consider the gauge sector of the model. The field equations in the Lorentz basis are

R
a1...ak
mn (ω) = 0 , k = 0, 1, ..., s − 1 .

Low spin examples:
(s=1) Rmn ≡ Fmn = 0 is Maxwell BF theory.
(s=2) Rmn = 0 and Ra

mn = 0 is the Jackiw-Teitelboim theory.

A triplet form of the field space of BF system

Field space = (dynamical fields) ⊕ (auxiliary fields) ⊕ (Stueckelberg fields)

First reduction: dynamical fields φ and φa1...as

Using the higher spin gauge φa1...as = 0 one arrives at the KG equation

∇2φ−m2
sφ = 0 , where m2

s = s(s − 1)Λ , s ≥ 2 ,

plus leftover gauge symmetry satisfying generalized Killing eqs.

Second reduction: dynamical fields ϕ and ϕa1...as

Using the scalar gauge ϕ = 0 one arrives at the conservation condition

∇nϕna1...as−1 = 0 ,

plus leftover gauge symmetry expressed as particular ”improvements”.
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A few comments

The original (linearized) BF higher spin theory gives rise to two metric-like theories
related by a duality transformation: scalar/current duality.

BF equations (and action) are ”parent” for two dual metric-like formulations (in
the spirit of Fradkin and Tseytlin’1986).

This is similar to WZW model: g(x) satisfies the second-order eq
∂m(g−1∂mg) = 0. On the other hand, introducing a current Jm = g−1∂mg one
obtains a conservation condition ∂mJm = 0.

The theory has no local PDoF. It is obvious for BF formulation. Within the
metric-like formulations there are gauge symmetries that eliminate all local degrees
of freedom.
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Conclusions & outlooks

Done:

Higher spin gravity in AdS2 spacetime formulated as BF-type theory with fields
taking values either in finite-dim or infinite-dim higher spin algebra.

The linearized metric-like dynamics: dual scalar/current descriptions. It follows
form the σ± cohomology problem.

To be done:

Black hole type solutions to AdS2 higher spin gravity which generalize known black
hole solutions to the Jackiw - Teitelboim gravity. Analogous to BTZ black holes.

The AdS2/CFT1 for a one-parametric HS algebra hs[ν]: an explicit description of
the corresponding classical mechanics.
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