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Introduction

What we know about neutrino oscillations?
1. Neutrino oscillations do exist.
2. Neutrino oscillations are related to propagation in space-time
(translations).
3. Neutrino oscillations are not related to rotations and (it seems) to
Lorentz transformations.
4. The theory of neutrino oscillations is known for more then 30 years.
5. However it is a problem to construct flavor states of neutrino.

The aim of this talk is an attempt to solve this problem.
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The standard approach to the problem of description of oscillations is
connected to introduction of mass and flavor basis. However flavor
solutions do not form the basis of irreducible representation of the Poincaré
group. It is not good.
It will be of interest to construct irreducible representation which describe
flavor states of neutrino. Obviously it is impossible in the framework of the
Dirac spinor space. However, assuming that the effect of oscillations is
Lorentz invariant, for constructing such a representation it is possible to
modify only generators of translations. Since the translation subgroup is
the Abelian subgroup, this modification can be reduced to multiplying by a
matrix. Taking in mind that there are three type of neutrino, the matrix
must have dimension 3× 3.
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Thus the representation space is the direct product of the Dirac spinor
space and the space of finite-dimensional irreducible representation of some
group. It is natural to chouse the space of fundamental representation of
SU(3) group.
The matrix of interest can be represented as

Nν =
∑

l=1,2,3

m

ml
P(l)

ν , (1)

where P(l)
ν are the orthogonal projectors: P(l)

ν P(k)
ν = δklP

(l)
ν , and m,ml are

real numbers. We can write

P(l)
ν = n(l) ⊗ n

∗ (l)
.

Here n(l) are eigenvectors of Nν . Eigenvectors n
(k)
i are normalized by

condition

n
(k)
i n

∗ (l)
i = δkl ,

3∑
k=1

n
(k)
i n

∗ (k)
j = δij .
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Then the Dirac equation takes the form

Nν (iγµ∂µ −m)ψν(x) = 0. (2)

Multiplying (2) by
N−1

ν =
∑

l=1,2,3

ml

m
P(l)

ν ,

we get
(iγµ∂µ −Mν)ψ

ν(x) = 0. (3)

Here
Mν =

∑
l=1,2,3

ml

(
n(l) ⊗ n

∗ (l)
)

(4)

is the mass matrix of neutrino.
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The complete orthonormalized system of solutions of this equation takes
the form

ψν
q,ζ0,(l)

(x) = e−i(qx)[ml/m] (ml/m)3/2 n(l)(1− ζ0γ5Ŝ0(q))(q̂ + m)ψν
0 . (5)

4-vector qµ obeys q2 = m2; 4-vector Sµ
0 (q) determines the direction of

polarization of the particle, ζ0 = ±1 is the sign of spin projection on this
direction, and ψν

0 is the constant bispinor that is ψ̄ν(x)ψν(x) = m/q0.

A. Lobanov (MSU) Neutrino oscillations June, 3 6 / 17



It is possible to take a similar consideration for charged leptons. As a result
we have the Dirac equation

Ne (iγµ∂µ −M)ψe(x) = 0. (6)

This equation can be transformed to

(iγµ∂µ −Me)ψ
e(x) = 0. (7)

Here
Me =

∑
l=1,2,3

Mβ

(
a(β) ⊗ n

∗ (β)
)

(8)

is the mass matrix of charged leptons.
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The complete orthonormalized system of solutions of this equation takes
the form

ψe
q,ζ0,(β)(x) = e−i(qx)[Ml/M] (Mβ/M)3/2 a(β)(1−ζ0γ5Ŝ0(q))(q̂+M)ψe

0 . (9)

4-vector qµ obeys q2 = M2; 4-vector Sµ
0 (q) determines the direction of

polarization of the particle, ζ0 = ±1 is the sign of spin projection on this
direction, and ψν

0 is the constant bispinor that is ψ̄e(x)ψe(x) = M/q0.
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If
n(l) = a(β)

we have the Standard Model with three generations.

If
n(l) 6= a(β)

we have mixing of generations.
The elements of the mixing matrix are

n
(l)
i a

∗ (β)
i = Uβl , n

∗ (l)
i a

(β)
i = U∗

βl . (10)
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Now we can construct the flavor basis for neutrino

ψν
q,ζ0,(α)(x) =

=

[
3∑

l=1

e−i(qx)[ml/m] (ml/m)3/2 U∗
αln

(l)

]
(1− ζ0γ5Ŝ0(q))(q̂ + m)ψν

0 . (11)

And we can calculate the probabilities of the processes with
neutrino using the common Feynman rules.
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Let us consider the decay

π+ ⇒ l+ + ν,

where l+β = µ+, e+.
Assume that 4-momentum of π+ is equal to kµ, k2 = m2

π and
4-momentum of l+ is equal to pµ, p2 = M2

β .

Suppose that the (large) distance from source of neutrino is equal to L,
and the linear size of the source is equal to L0.
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Then

W L
αβ =

G 2
Ff 2

π

4(2π)6k0

∫
d4xd4y

∫
d4qd4p δ(p2 −M2

β)δ(q2 −m2)×

×

[
3∑

k,l=1

e i(qx)[mk/m]−i(qy)[ml/m]+i((p−k)(x−y))+2πiL|q|/m(mk−ml )×

× (ml/m)3/2 (mk/m)3/2 UβkU∗
βlUαlU

∗
αk

]
×

× Sp
[
(p̂ −Mβ)k̂(1 + γ5)(q̂ + m)k̂(1 + γ5)

]
. (12)
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Let us take for simplicity k = 0, i.e. π+ is at rest. Using the standard
ansatz of scattering theory

xµ, yµ ⇒ (xµ − yµ), (xµ + yµ)/2

we have up to terms ∼ m2
k,l/mπEν (Eν is neutrino energy)

W L
αβ =

G 2
Ff 2

π

8π
M2

β

(
m2

π −M2
β

)2

m3
π

×

×

[
3∑

k,l=1

UβkU∗
βlUαlU

∗
αk

∆3
kl

sin(πL0/L
(kl)
osc )

πL0/L
(kl)
osc

e2πiL/L
(kl)
osc

]
, (13)

where

L
(kl)
osc =

4πEν

m2
k −m2

l

, Eν =
m2

π −M2
β

2mπ
, ∆kl = (mk + ml)/(2

√
mkml) > 1.

.
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In the standard theory of neutrino oscillations we have

W L
αβ =

G 2
Ff 2

π

8π
M2

β

(
m2

π −M2
β

)2

m3
π

×

×

[
3∑

k,l=1

UβkU∗
βlUαlU

∗
αk

sin(πL0/L
(kl)
osc )

πL0/L
(kl)
osc

e2πiL/L
(kl)
osc

]
. (14)
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Discussion

Using these results it is possible to draw a conclusion (if the point of view
discussed above is reasonable), that the products of reaction with neutrino
contain not only neutrino, possessing the main flavor, but and admixture of
neutrino of other flavors.
Formula (13) demonstrates, that investigation of neutrino oscillations can
give information not only about differences of neutrino masses but also
about their absolute values.
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Conclusion

This talk, of course, is not a revelation, but rather a visual aid. Though it, I
think, gives causes for reflections. Therefore there were no words like
“reactor anomaly”, “sterile neutrino” and so on.

However...
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Thank you for your attention!
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