Study of $K \rightarrow \pi \gamma \gamma$ decay at the NA62 experiment

18th Quarks Seminar Suzdal, 02-08.06.2014

> Viacheslav Duk, INR Moscow & INFN Perugia For the NA62 collaboration

\Box K $\rightarrow \pi \gamma \gamma$ decay NA62 experiment at CERN Results of 2007 run Combined NA48/2 and NA62 results NA62 current status Conclusions

Kaon map of the world

$K \rightarrow \pi \gamma \gamma$ decay: theory

In the ChPT framework the differential rate of the decay $K^{\pm}(p) \rightarrow \pi^{\pm}(p_3)\gamma(q_1)\gamma(q_2)$ process (no O(p²) contribution) is:

$$\frac{\partial\Gamma}{\partial y\partial z}(\hat{c}, y, z) = \frac{m_K}{2^9\pi^3} \left[z^2 \left(|A(\hat{c}, z, y^2) + B(z)|^2 + |C(z)|^2 \right) + \left(y^2 - \frac{1}{4}\lambda(1, r_\pi^2, z) \right)^2 |B(z)|^2 \right]$$

$$y = \frac{p(q_1 - q_2)}{m_K^2}, \quad z = \frac{(q_1 + q_2)^2}{m_K^2} = \left(\frac{m_{\gamma\gamma}}{m_K}\right)^2$$

$$\lambda(a, b, c) = a^2 + b^2 + c^2 - 2(ab + bc + ca)$$

ChPT O(p⁴): \checkmark Leading contribution from A(z, ĉ), responsible for a cusp at m_{YY} = 2m_n \checkmark C ~ 0.1A [Ecker, Pich, de Rafael, Nucl. Phys. B303 (1988), 665] \checkmark B=0, D=0

$$\hat{c} = \frac{128\pi^2}{3} [3(L_9 + L_{10}) + (N_{14} - N_{15} - 2N_{18})]$$

[D'Ambrosio, Portoles, PLB 386 (1996), 403]

Weak Chiral Lagrangian Strong loop and counterterms

$K \rightarrow \pi \gamma \gamma$ decay: theory

 $z = \frac{(q_1 + q_2)^2}{m_K^2} = \left(\frac{m_{\gamma\gamma}}{m_K}\right)^2$

✓ Spectrum determined by \hat{c} ✓ Cusp can be seen at z = $(2m_{\pi}/m_{K})^2$

✓ Non-zero rate at z = 0 (generated by B amplitude) for ChPT O(p^6)

03.06.2014

$K \rightarrow \pi \gamma \gamma$ decay: experimental status

FIG. 1. π^+ momentum distribution for 31 $K^+ \rightarrow \pi^+ \gamma \gamma$ candidates (solid) and for estimated background events (dashed). The acceptance is given by the dotted line.

E787 (1997): **BR = (11 ± 3 ± 1) × 10**-7 31 candidates, ~5 bkg events

Extracted \hat{c} values: $O(p^4)$: $\hat{c} = 1.6 \pm 0.6$ $O(p^6)$: $\hat{c} = 1.8 \pm 0.6$

[PRL79 (1997) 4079]

NA62 experiment

NA62 collaboration:

Birmingham, Bratislava, Bristol, CERN, JINR Dubna, Fairfax, Ferrara, Florence, Frascati, Glasgow, IHEP Protvino, INR Moscow, Liverpool, Louvain-la-Neuve, Mainz, Merced, Naples, Padua, Perugia, Pisa, Prague, Rome I, Rome II, San Luis Potosí, Sofia, Stanford, Turin

NA48/2 and NA62 beamline

NA48/2 Data taking:
 4 months in 2003 (K[±])
 4 months in 2004 (K[±])

NA62-RK Data taking:

2007 mostly K⁺

Kaon beam momentum [GeV/c]				
NA48/2 (2003-4)	60.0 ± 2.2			
NA62 (2007)	74.0 ± 1.4			
NA62 (2014)	75.0 ± 0.8			

NA48/2 and NA62 detector

Main detectors:

- ✓ Magnetic spectrometer
- Scintillator hodoscope
- Liquid Krypton EM calorimeter (LKr)

Magnetic spectrometer:

- ✓ 4 drift chambers (DCH)
- ✓ 4 views per DCH
- δp/p = 0.48% + 0.009%p [GeV/c]

Scintillator hodoscope:

- Good time resolution (150ps)
- ✓ Fast trigger

LKr:

- High granularity (13248 cells, 2x2 cm²)
- ✓ Quasi-homogenious, 7m³ liquid Kr (27X₀)
- ✓ $\sigma_{\rm E}/{\rm E} = 3.2\%/{\rm E}^{1/2} + 9\%/{\rm E} + 0.42\%$ [GeV]

Analysis strategy

- ✓ Select signal events $K \rightarrow \pi \gamma \gamma$
- ✓ Select events corresponding to the normalization decay $K \rightarrow \pi \pi^0 (\pi^0 \rightarrow \gamma \gamma)$
- Calculate model-independent BR
- Calculate ĉ from the fit of z-spectrum (ĉ is modeldependent)
- Calculate BR (model-dependent) from ĉ
- Compare BR measurement with previous results

Main variable for the signal observation: $M(\pi\gamma\gamma)$ Main variable for the signal study: $z = (m_{\gamma\gamma}/m_K)^2$

Event selection

Identical cuts for signal and normalization:

- One secondary track (pion)
- Reconstructed vertex inside 98m fiducial volume
- Track momentum: 8
- ✓ E/p < 0.85 (pion ID)</p>
- 2 isolated clusters in LKr with E > 3GeV
- 0.48 < M(πγγ) < 0.51 GeV/c²

Different cuts for signal and normalization:

- z > 0.2 for signal (to suppress backgrounds)
- ✓ 0.064 < z < 0.086 for normalization (z~0.075 corresponds to the $m_{\gamma\gamma} \sim m_{\pi0}$)

Main variable for the signal observation: $M(\pi\gamma\gamma)$ Main variable for the signal study: $z = (m_{\gamma\gamma}/m_K)^2$

Signal observation

large z: pion at rest, goes into the beam tube

232 signal candidates $K \rightarrow \pi \pi^0 \gamma$ bkg: 15.3 ± 1.1 events $K \rightarrow \pi \pi^0 \pi^0$ bkg: 2.1 ± 0.3 events Main bkg source: cluster merging in LKr

5.488×10⁷ normalization candidates bkg contamination 0.115%

Model-independent (MI) BR

z range	N_j	N_j^B	A_j	$\mathcal{B}_j \times 10^6$
0.20 - 0.24	13	4.89	0.194	0.045 ± 0.020
0.24 - 0.28	9	2.73	0.198	0.034 ± 0.016
0.28 - 0.32	18	2.33	0.194	0.087 ± 0.024
0.32 - 0.36	33	1.30	0.190	0.180 ± 0.033
0.36 - 0.40	31	0.98	0.184	0.177 ± 0.033
0.40 - 0.44	18	1.61	0.173	0.103 ± 0.027
0.44 - 0.48	23	1.21	0.135	0.175 ± 0.038
z > 0.48	4	0.52	0.049	0.076 ± 0.044

z-range divided into small bins (acceptance in a bin independent of kinematics)
 Bin content dependence on y is weak (<10%)
 ChPT Γ-dependence on y is ~10%

Final NA62 result:
$$B_{MI}(z > 0.2) = \sum_{j=1}^{8} B_j = (1.088 \pm 0.093_{stat}) \times 10^{-6}$$

MI BR: NA48/2 and NA62 combined results

Bin z range	В _ј х 10 ⁶
0.20-0.24	0.030 ± 0.011
0.24-0.28	0.046 ± 0.011
0.28-0.32	0.097 ± 0.015
0.32-0.36	0.194 ± 0.022
0.36-0.40	0.207 ± 0.023
0.40-0.44	0.123 ± 0.019
0.44-0.48	0.164 ± 0.025
z>0.48	0.104 ± 0.036

Final combined NA48/2 and NA62 result:

381 candidates

 $BR_{MI}(z>0.2) = (0.965 \pm 0.061 \pm 0.014) \times 10^{-6}$

Fit of the z-spectrum

NA62 (2007) ChPT O(p⁴) fit: $\hat{c}_4 = 1.93 \pm 0.26_{stat} \pm 0.08_{syst}$

NA62 (2007) ChPT O(p⁶) fit: $\hat{c}_6 = 2.10 \pm 0.28_{stat} \pm 0.18_{syst}$

NA62 (2007) and NA48/2 combined ChPT O(p⁴) fit: **c**₄ = **1.72 ± 0.20**_{stat} **± 0.06**_{syst}

NA62 (2007) and NA48/2 combined ChPT O(p⁶) fit: **c**₆ = **1.86 ± 0.23**_{stat} **± 0.11**_{syst}

Using ChPT formulation: D'Ambrosio, Portolés, PLB386 (1996) 403

Cusp structure confirmed by the data
 Data consistent with both ChPT O(p⁴) and O(p⁶)
 Systematic uncertainty dominates by the precision of the bkg estimate

Model-dependent BR from ĉ

Combined Model Dependent BR in full phase space: BR_{Op6} = (1.003 ± 0.051_{stat} ± 0.024_{syst}) x 10⁻⁶

To be compared with PDG(BNL E787): $BR_6 = (1.1 \pm 0.3 \pm 0.1) \times 10^{-6}$

NA48/2: [Phys. Lett. B730 (2014) 141]

NA62 (2007) and combined results: [Phys. Lett. B732 (2014) 65]

03.06.2014

Publications:

Current status of the NA62 experiment

NA62 experiment at CERN

Rare kaon decays:

- Indirect searches for New Physics (NP) beyond Standard Model (SM)
- Complementary to LHC

NA62 at SPS CERN:

- Last generation kaon experiment
- Main goal: measurement of the $K^+ \rightarrow \pi^+ vv$ decay with ~10% precision (~100 events in 2 years of data taking)

$K^+ \rightarrow \pi^+ vv$ decay:

- ✓ Theoretically clean: BR_{SM} = (7.81 ± 0.75 ± 0.29) ⋅ 10⁻¹¹
- ✓ Strongly suppressed in SM (FCNC)
- Sensitive to NP

CNGS: Cern Neutrinos to Gran Sasso

NA62 experimental setup

NA62 basic principles

BR(K⁺\rightarrow \pi^+ \nu \nu) ~ 8.10⁻¹¹ Main backgrounds: BR(K⁺\rightarrow \mu^+ \nu_{\mu}) = 0.64 BR(K⁺\rightarrow \pi^+ \pi^0) = 0.21

NA62 basic principles: High intensity + fast timing Kinematic selection

- ✓ Particle ID
- Photon rejection

Main Backgrounds Rejection:

	π*νν	µ⁺v	π⁺π⁰
BR	8 × 10 ⁻¹¹	63%	21%
m _{miss}	14.4%	8 × 10 ⁻⁶	1.2 × 10 ⁻⁴
γ rejection	-	-	3.5 × 10 ⁻⁸
µ veto	-	10 ⁻⁵	-
RICH	- (5 × 10 ⁻³	-
Total	1.15 × 10 ⁻¹¹	2.5 × 10 ⁻¹³	8.8 × 10 ⁻¹³
Ratio	1	2.2%	7.5%

Main variable for the kinematic selection: $M_{miss}^2 = (P_K - P_{\pi})^2$

Beyond the baseline: ~10⁵ K $\rightarrow \pi \gamma \gamma$ decays per year

03.06.2014

Timeline of the NA62 experiment

- 5 years of construction interleaved with a Technical Run in fall 2012
- In 2014 a first Run with full detector
- Plan 3 years of Physics data taking before LHC Long Shutdown 2 (LS2)

conclusions

 \checkmark K $\rightarrow \pi\gamma\gamma$ decay has been studied at the NA62 experiment (2007) run), 232 candidates selected (bkg ~17 events) Results for the combined data samples (NA48/2 and NA62, 381 candidates): Model-independent BR measured: $BR_{MT} = (0.965 \pm 0.061 \pm 0.014) \times 10^{-6}$ ChPT fits are performed for the z-spectrum, ĉ extracted: $\hat{c}_4 = 1.72 \pm 0.20 \pm 0.06; \quad \hat{c}_6 = 1.86 \pm 0.23 \pm 0.11$ Model-dependent BR calculated from ĉ: $BR(O(p^6), \text{ full range}) = (1.003 \pm 0.056) \times 10^{-6}$ NA62 starts main data taking soon (October 2014: first run)

spares

Trigger conditions

- 1. Time coincidence in the two CHOD planes AND loose condition on Drift Chambers hiti multiplicity (20%)
- 2. Previous condition AND an energy realease > 10 Gev in the Liquid Kripton Calorimeter (60%)
- 3. A signal in the Neutral Hodoscope (20%)

The resulting data sample correspond to about 6% of the total beam flux.