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The analytical O(α4s ) results for the NS contributions to the Adler
function of the EM quark currents and to to the Bjorken sum rule of the
polarized lepton-nucleon scattering Baikov, Chetyrkin and Kuhn (2010)
are considered within β-expansion BLM extension approach with the
multiple β-function generalization of the Crewther relation Kataev and
Mikhailov Quarks 2010 - Theor.Math.Phys. 2012. The doubts of Brodsky,
Wu, Mojaza 2011-2014 on the uniq1uiness of this approach are revealed



Studies of di�erent ways of resummation and �xation of scale-scheme
uncertainties of HO QCD PT predictions plus understanding of basic
features and symmetries beyond these representations are theoretical and
phenomenologically important. We consider the following quantities in MS
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β-expansions approach is the MS-scheme generalization of the BLM method
(1983) Mikhailov, Quarks-2004, JHEP(2007) for all orders after NNLO
generalization of Grunberg and Kataev (1992) and related works by Beneke
and V.Braun (1995) Basis - Instead of Scalar Representation to use Matrix
Representation
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where B l(NF )-products of β-function coe�cients and
dn(NF ) = DnlB

l(NF ) where terrms Dnl do not depend from the numbers
of �avours NF and have the following form
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The result for d3 was obtained by Mikhailov (2007) using QCD + ngl
multiplet of massless gluiono, contributing to d3(NF , ngl from the result of

Chetyrkin (1997). Terms β0(NF )d3[1] , β1(NF )d4[0, 1] β0(NF )d4[1] were

neglected by Brodsky et al . So ambiguity ? NO! Terms dn[0] are related to
CS limit

Why β0(NF )d3[1] , β1(NF )d4[0, 1] β0(NF )d4[1] were neglected by

Brodsky et ? Without neglecting these terms it was impossible to get
used by them approximate β-expansion
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Using complete NF dependence of the βi (NF ) and di (NF )
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The β-expanded representation is true in the case of NS contribution to the
Bjorken sum rule of the polarisez lepton-nucleon DIS Kataev, Mikhailov
(2010-2012). The β-expanded form for CNS

Bjp was obtained from the

O(α4
s )-generalization of the matrix representation for the MS-scheme

generalization of the Crewther relation Kataev, Mikhailov Quarks-2010,
Theor.Mat.Fiz (2012)
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Note that the terms in boxes can not be eliminated. Without them in
KM(2010)-(2012) results the powers of β-function will be spoiled



Indeed the polynmials of conformal symmetry breaking powers of β-function
contain these terms and they can not be neglectred in the process of
constructing "Principle of Minimal Conformality"by Brodsky et al
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To explain what is PMC consider �rst β expansion for DNS(as(t = Q2/µ2))
and to �nd as(t1, t) to cancel a part of β-expansion step by step in every
order and to accumulate it in new log-scale t1, as(t1) = a1 . It is possible
to do, introducing coupling constant dependent de�nition of scale and
absorbing all β-function dependence into the scale. The �nal expansion
should have the form with the coe�cients, respecting conformal symmetry
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However, as we noted, in the papers by Brodsky et al the scale is de�ned
in some approximation and de�nite terms are missed - they arwe using
NOT COMPLETE β-expansion procedure. We have the corrected result
at a2s and a3s level- the shifts of scales are serious. However they will be
presented after additional cross-checks- Stay Tuned!


