Multiparicle Processes and Space-Time Dimension

Grigorii Pivovoarov

Quarks-2014, Suzdal, June 2014

Three Blocks

Fun with Graphs

I define an integer valued function on graphs, R(g), and make a claim about its values. (Surprising, checked on examples, unproven.)

Multi-particle Processes

A new representation for multi-particle amplitudes, involving the above R(G)

A Speculation

Space time is an attribute of a set of graphs

0		÷			
()	t			e	

Recursive definition

Sum over nontrivial partitions

$$R(g) = \chi(g) \sum_{p \in P'(g)} f(p) \prod_{g' \in p} R'(g')$$

Recursion base

$$R'(v)=1,\ R'(g\neq v)=R(g)$$

The characteristic function

- $\chi(g) = 1$ if $|E(g)| \le 2|V(g)| 3$
- and there are no tadpoles (loops)
- and number of adjacent edges is less than 4 for each vertex
- $\chi(g) = 0$ otherwise

The double sum

Reduced graph

g/p is graph obtained from g by contraction of all the edges starting and ending inside the same element of the partition p. The elements of the partition become the vertexes of the reduced graph

The coefficient

$$f(p) = \sum_{p' \in P(g/p)} \chi(p')(-1)^{|p'|} (|p'| - 1)!$$

Which p'-s do contribute?

 $\chi(\mathbf{p}') = 1$ if there is no edges of \mathbf{g}/\mathbf{p} starting and ending inside one and the same element of \mathbf{p}' ; otherwise $\chi(\mathbf{p}') = 0$

Speculation

The double sum (continued)

Putting it all in a single formula

$$R(g) = \chi(g) \sum_{p \in P'(g)} \sum_{p' \in P(g/p)} \chi(p')(-1)^{|p'|} (|p'| - 1)! \prod_{g' \in p} R'(g')$$

Graphical rules

The contributions to the sum in R(g) will be depicted as the graph g with the elements of p encircled in red, and the elements of p', in green. The signed factor of the contribution follows the graph.

R(g) for |V(g)| < 3

$$\mathcal{R}(\cdot \cdot) = \textcircled{0} (-1)$$

$$R(-) = \Theta = 1$$

[No other graphe with $|V| = 2$
because $|E| \le 2|V| - 3$]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

R(g) for |V(g)| = 3

◆□→ ◆昼→ ◆量→ ◆畳→ ◆□→ のへの

R(g) for |V(g)| = 4

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへの

R(g) for |V(g)| = 4 (continued)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つへぐ

ション ふゆ マ キャット しょう くしゃ

Conjectures on R(g)

- R(g) is a characteristic function of a subset of graphs
- This set is the set of connected graphs corresponding to the Feynman amplitudes convergent in the ultraviolet at physical space-time dimension

Separation

Generating functional of Connected Green functions

$$W(J) = -\frac{1}{2}JDJ + A(iDJ)$$

 $A(\phi)$ is the generating functional of connected amplitudes

Inaction and vertex functionals

$$A(\phi) = I(\phi) + V(\phi)$$
$$I(\phi) = I_3 * \phi^3 + I_4 * \phi^4$$

 $V(\phi)$ is the generating functional of multi-particle amplitudes

Fun with Graphs

Multi-particle processes

Speculation

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Effective Feynman amplitudes

$\text{Graph} \leftrightarrow \text{effective amplitude}$

$$A(g,\phi) = \Big(\prod_{e \in E(g)} \frac{\delta}{\delta \phi_{v_{e1}}} D \frac{\delta}{\delta \phi_{v_{e2}}} \prod_{v \in V(g)} I(\phi_v) \Big)|_{\phi_v = \phi}$$

Representation for the vertex functional

$$V(\phi) = \sum_{g} \frac{R(g)}{|Aut(g)|} A(g, \phi)$$

うして ふゆう ふほう ふほう ふしつ

Inaction equation

The above representation is implied by the inaction equation:

$PT^{-1}\log T \exp[I(\phi) + V(\phi)] = 0$

See derivation in G. P. arXiv:1312.7526 It follows from the property of the action:

 $\mathrm{PS}(\phi) = 0$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

A fork

first branch

R(g) is not zero on graphs with ultraviolet divergences \rightarrow A form of asymptotic freedom

second branch

R(g) behaves as I expect \rightarrow graph combinatorics defines the space time dimension!

Current tasks

- Check conjecture on R(g) for larger graphs (put it on computer)
- Introduce various types of vertexes and lines and generalize the definition of R(g) accordingly
- Try to prove the conjecture (using Hopf algebras?)