Multiparicle Processes and Space-Time Dimension

Grigorii Pivovoarov

Quarks-2014, Suzdal, June 2014

Three Blocks

Fun with Graphs

I define an integer valued function on graphs, $R(g)$, and make a claim about its values. (Surprising, checked on examples, unproven.)

Multi-particle Processes

A new representation for multi-particle amplitudes, involving the above $\mathrm{R}(\mathrm{G})$

A Speculation
Space time is an attribute of a set of graphs

Recursive definition

Sum over nontrivial partitions

$$
\mathrm{R}(\mathrm{~g})=\chi(\mathrm{g}) \sum_{\mathrm{p} \in \mathrm{P}^{\prime}(\mathrm{g})} \mathrm{f}(\mathrm{p}) \prod_{\mathrm{g}^{\prime} \in \mathrm{p}} \mathrm{R}^{\prime}\left(\mathrm{g}^{\prime}\right)
$$

Recursion base

$$
R^{\prime}(v)=1, R^{\prime}(g \neq v)=R(g)
$$

The characteristic function

- $\chi(\mathrm{g})=1$ if $|\mathrm{E}(\mathrm{g})| \leq 2|\mathrm{~V}(\mathrm{~g})|-3$
- and there are no tadpoles (loops)
- and number of adjacent edges is less than 4 for each vertex
- $\chi(\mathrm{g})=0$ otherwise

The double sum

Reduced graph

g / p is graph obtained from g by contraction of all the edges starting and ending inside the same element of the partition p . The elements of the partition become the vertexes of the reduced graph

The coefficient

$$
\mathrm{f}(\mathrm{p})=\sum_{\mathrm{p}^{\prime} \in \mathrm{P}(\mathrm{~g} / \mathrm{p})} \chi\left(\mathrm{p}^{\prime}\right)(-1)^{\left|\mathrm{p}^{\prime}\right|}\left(\left|\mathrm{p}^{\prime}\right|-1\right)!
$$

Which p^{\prime}-s do contribute?
$\chi\left(p^{\prime}\right)=1$ if there is no edges of g / p starting and ending inside one and the same element of p^{\prime}; otherwise $\chi\left(\mathrm{p}^{\prime}\right)=0$

The double sum (continued)

Putting it all in a single formula

$$
\mathrm{R}(\mathrm{~g})=\chi(\mathrm{g}) \sum_{\mathrm{p} \in \mathrm{P}^{\prime}(\mathrm{g})} \sum_{\mathrm{p}^{\prime} \in \mathrm{P}(\mathrm{~g} / \mathrm{p})} \chi\left(\mathrm{p}^{\prime}\right)(-1)^{\left|\mathrm{p}^{\prime}\right|}\left(\left|\mathrm{p}^{\prime}\right|-1\right)!\prod_{\mathrm{g}^{\prime} \in \mathrm{p}} \mathrm{R}^{\prime}\left(\mathrm{g}^{\prime}\right)
$$

Graphical rules

The contributions to the sum in $R(g)$ will be depicted as the graph g with the elements of p encircled in red, and the elements of p^{\prime}, in green. The signed factor of the contribution follows the graph.
$\mathrm{R}(\mathrm{g})$ for $|\mathrm{V}(\mathrm{g})|<3$

$$
\begin{aligned}
& R(\cdot)=\varnothing \quad(\text { no sub graph }) \\
& R(\cdot \cdot)=囚(0)+\Theta(-1)
\end{aligned}
$$

$$
=\varnothing
$$

(holes for all disconnect. graphs)

$$
R(-)=(\pi)=1
$$

[No other graph with $|V|=2$ Because $|E| \leqslant 2|V|-3]$

$$
\begin{aligned}
& \mathrm{R}(\mathrm{~g}) \text { for }|\mathrm{V}(\mathrm{~g})|=3 \\
& R(-)=2+ \\
&+(-\infty)+(-2)=1 \\
& R(\triangle)=3+(-2) \\
& R(-\infty)=1 \\
&+\infty+\infty)
\end{aligned}
$$

$$
\mathrm{R}(\mathrm{~g}) \text { for }|\mathrm{V}(\mathrm{~g})|=4
$$

$$
\begin{aligned}
& R(\cdots)=2 \\
& +2[\Leftrightarrow(-2)+\omega 6] \\
& +[\because(-2)+\longrightarrow] \\
& +(6)+2(-2)
\end{aligned}
$$

$$
\begin{aligned}
& +0^{\infty}(6)+3()^{\infty}(-2)+ \\
& + \text { 发 }=1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}(\mathrm{~g}) \text { for }|\mathrm{V}(\mathrm{~g})|=4 \text { (continued) } \\
& R(\square)=4 \text { 目 }+2 \text { (iD) } \\
& +4 \text { (1) }(-2)+\text { 曷昌 (6) } \\
& \begin{array}{l}
+2 \text { D }(-2)+B(\square)=1 \\
R(\square)=2+1(1)+
\end{array} \\
& +3 \text { (1) }(-2)+8(6) \\
& +2 \text { 里 }(-2)+ \\
& =\varnothing \text { ! }
\end{aligned}
$$

Conjectures on $R(\mathrm{~g})$

- $R(g)$ is a characteristic function of a subset of graphs
- This set is the set of connected graphs corresponding to the Feynman amplitudes convergent in the ultraviolet at physical space-time dimension

Separation

Generating functional of Connected Green functions

$$
\mathrm{W}(\mathrm{~J})=-\frac{1}{2} \mathrm{JDJ}+\mathrm{A}(\mathrm{iDJ})
$$

$\mathrm{A}(\phi)$ is the generating functional of connected amplitudes

Inaction and vertex functionals

$$
\begin{gathered}
\mathrm{A}(\phi)=\mathrm{I}(\phi)+\mathrm{V}(\phi) \\
\mathrm{I}(\phi)=\mathrm{I}_{3} * \phi^{3}+\mathrm{I}_{4} * \phi^{4}
\end{gathered}
$$

$\mathrm{V}(\phi)$ is the generating functional of multi-particle amplitudes

Effective Feynman amplitudes

Graph \leftrightarrow effective amplitude

$$
\mathrm{A}(\mathrm{~g}, \phi)=\left.\left(\prod_{\mathrm{e} \in \mathrm{E}(\mathrm{~g})} \frac{\delta}{\delta \phi_{\mathrm{ve}_{\mathrm{e} 1}}} \mathrm{D} \frac{\delta}{\delta \phi_{\mathrm{ve}_{\mathrm{e} 2}}} \prod_{\mathrm{v} \in \mathrm{~V}(\mathrm{~g})} \mathrm{I}\left(\phi_{\mathrm{v}}\right)\right)\right|_{\phi_{\mathrm{v}}=\phi}
$$

Representation for the vertex functional

$$
\mathrm{V}(\phi)=\sum_{\mathrm{g}} \frac{\mathrm{R}(\mathrm{~g})}{|\operatorname{Aut}(\mathrm{g})|} \mathrm{A}(\mathrm{~g}, \phi)
$$

Inaction equation

The above representation is implied by the inaction equation:

$$
\mathrm{PT}^{-1} \log \mathrm{~T} \exp [\mathrm{I}(\phi)+\mathrm{V}(\phi)]=0
$$

See derivation in G. P. arXiv:1312.7526
It follows from the property of the action:

$$
\operatorname{PS}(\phi)=0
$$

first branch

$R(g)$ is not zero on graphs with ultraviolet divergences $\rightarrow A$ form of asymptotic freedom

second branch

$R(g)$ behaves as I expect \rightarrow graph combinatorics defines the space time dimension!

Current tasks

- Check conjecture on $R(g)$ for larger graphs (put it on computer)
- Introduce various types of vertexes and lines and generalize the defintion of $R(g)$ accordingly
- Try to prove the conjecture (using Hopf algebras?)

