
Towards QCD running in 5 loops:

quark mass anomalous dimension

Konstantin Chetyrkin

in collaboration to

Pavel Baikov (MSU) & Johann Kühn (KIT)
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Multiloop RG: Current Status

Any 5-loop RG functions (that is β-functions and anomalous dimensions) are
analytically computable in any model (in the minimal subtraction scheme)

Recent advances at 5-loop level:

• QED-beta function (including corrections due to the quark-gluon interaction)
/ Baikov, K. Ch. , P, J. Kühn, J. Rittinger, 2008-2012/

• ghost and quark field and quark mass anomalous dimensions as well as (a significant
piece of) ghost-ghost-gluon vertex anomalous dimension are ready /this talk/

• but the full QCD β-function is not (yet!) available (gluon field renormalization →
main technical challenge, due to # of diagrams and over-complicated IR structure)



Motivations:

β(αs) and γm(αs) at 5 loops will be useful for

• the analysis of the τ -decay rate within so-called CIPT (a host of new terms will be
added to the current theoretical prediction)

• various QCD “optimization” schemes like PMS and PMC (the Principles of Maximal
Sensitivity P. Stevenson, 1981) and of Maximal Conformality (S. Brodsky, X. G.
Wu,L. Di Giustino,M. Mojaza, 2012) . . . will benefit from the knowledge of
β-function at 5 loops

• construction of a self-consistent prediction for H → b̄b/c̄c at O(α4
s) from the

corresponding result for the scalar correlator /P. Baikov, K.Ch. and J. Kühn,
(2006)/ and the quark mass anom. dim. γm(αs) (also at 5 loops) /this talk/

• construction of a self-consistent prediction for αs(MZ) from αs(Mτ) and the
decoupling equation for αs (known to 4 loops /K.Ch., J.Kühn and Ch. Sturm;
Y. Schröder and M. Steinhauser (2006)/)

• lattice (description of running vertexes and propagators for intermediate momentum
transfer)
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Most important property of Z-factors (in minimal schemes based on CDR): they depend
only on ǫ = 2 −D/2 (J. Collins, 1975). This leads to tremendous simplifications in
calculations → multiloop completely analytical calculations are really possible.

Let us concentrate on Zψ̄ψ and consider consider vertex function
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Suppose we want to compute L-loop contribution to Zψ̄ψ. There are (at least) 4 ways
to do it:

1. set 1 of 2 ext. momenta to zero → (the poles of) L-loop p-integrals (massless
propagators) tobe computed. That is how first 2-loop RG calculations in QCD were
done /D. R.T Jones, 1974/.

2. set all ext. momenta to zero and introduce an universal mass to all propagators
(including gluon!) → (the poles of) L-loop m-integrals (massive tadpoles) to be
computed. That is how the first 4-loop calculation of the QCD β-function was done
/van Ritbergen, T., Vermaseren, J. and Larin, S. (1997)/

3. set all ext. momenta to zero and introduce a mass into only one (but properly
chosen to avoid IR singularities) propagator → (L-1)-loop p-integrals (including their
finite part) to be computed /A. Vladimirov (1978)/ That is how the first 3-loop
calculation of the QCD β-function was done /Tarasov, O., Vladimirov, A. and
Zharkov, A. (1980)/. Problems: difficult to automatize; not applicable to all diagrams.

4. the same as 3. but IR singularities are removed recursively with so-called R∗-
operation /K.Ch. V. Smirnov (1984)/. Features: applicable for every possible diagram,
automatization is possible but not simple (due to involved structure of UV
subtractions (not IR ones!))



An example of a diagram which can not be computed with the 3-rd method

Here two well-separated IR divergencies in loop-integration makes problems. One, of
course, could regulate it with a small “auxiliary”mass: 1

p4
→ 1

(p2+m2)2
but that will

complicates integration, leading to a 2-scale integral.

The idea how to overcome the problem (in fact, it came from the Bogolyubov’s
distributional approach to QFT) is very simple: to subtract the unwanted IR divergency
with the help of an IR counterterm but now local in position space:

1

p4
→

1

(p4)
−

c

ǫ
δD(p)

with the constant c choosen such that there would be no IR poles coming from the
integration region of small momentum p.

After such a replacement no IR poles survive and integrations are made easily.



At 5-loop level only the 4-th way is currently feasible

with the use of the following tools:

• global solution of the combinatorics of R∗ operation (rather involved and problem
specific)

• the Baikov’s way of doing reduction with the help of 1/D expansion of the
corresponding coefficient functions in front of masters (analytically known from
two! independent calculations /K.Ch, P.Baikov (2010), R. Lee, V. Smirnov (2012)/

• ParFORM and T-FORM:

M. Tentyukov et al. “ParFORM: Parallel Version of the Symbolic Manipulation
Program”, PoS ACAT2010 (2010) 072

M. Tentyukov, H. M. Staudenmaier, and J. A. M. Vermaseren. “ParFORM: Recent
development”. Nucl. Instrum. Meth., A559:224–228, 2006.

M. Tentyukov and J. A. M. Vermaseren. “The multithreaded version of FORM”,
hep-ph/0702279”

in order to effectively implement the 1/D expansion



Calculation of the ghost field anomalous dimension γc3 =
∑∞
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at 5 loops has been just finished:
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Numerically (as ≡ αs
π ):
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Calculation of the anomalous dimension of gluon-ghost-ghost vertex

γccg1 =
∑∞

i=0(γ
ccg
1 )i
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is under way; the first result is ready (in “next2-to-renormalon”
approximation, Feynman gauge):
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f a

5
s vanishes (in any gauge!) due

to the Taylor theorem which states, in paricularly, that γccg1 ≡ 0 in the Landau gauge



Quark Mass Anomalous Dimension γm = −
∑

i≥0 γi a
i
s: history

3-loops: /O, Tarasov (82, with IRR reduced to 2-loop p-integrals);

3-loops: /S. Larin/ (92; direct evaluation of 3-loop p-integrals with MINCER)

4-loops: /K. Chetyrkin/ (97; with R∗-operation all FI’s were reduced to 3-loop
p-integrals; the latter were performed with MINCER)

4-loops: /J.A.M. Vermaseren, S.A. Larin, T. van Ritbergen/ (97; direct evaluation of
the completely massive 4-loop tadpoles /via a kind of Laporta machine (?)/)
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5 loop term in γm = −
∑

−i≥0 γi a
i
s

New result (preliminary)
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Boxed terms are in full agreement with predication made on the base of the 1/nf
method /M. Ciuchini, S.E. Derkachov, J.A. Gracey, A.N. Manashov, (2000)/



Numerical result:

γexact4 = 559.71− 143.6nf + 7.4824n2
f + 0.1083n3

f − 0.00008535n4
f

should be compared with a prediciton

γAPAP4 = 530− 143nf + 6.67n2
f + 0.037n3

f − 0.00008535n4
f

which is 15 years old result (obtained with the “Asymptotic Pade

Approximants” /APAP/ method ) by J. Ellis, I. Jack, D.R.T. Jones, M.

Karliner, M. A. Samuel, Phys. Rev. D57 (1998) 2665



Unfortunately, this strikingly good agreement does not survive for fixed values of nf :

nf 3 4 5 6

(γm)
exact
4 198.899 111.579 41.807 -9.777

(γm)
APAP
4 [EJJKS] 162.0 67.1 -13.7 -80.0

(γm)
APAP
4 [ESFM] 163.0 75.2 12.6 12.2

(γm)
APAP
4 [KK] 164.0 71.6 -4.8 -64.6

where we compare The exact results for (γm)4 together with the predictions made
with the help of the original APAP method and its two somewhat modified versions:

[EJJKS] =J. R. Ellis, I. Jack, D. Jones, M. Karliner, and M. Samuel, (1997)

[ESFM] = V. Elias, T. G. Steele, F. Chishtie, R. Migneron, and K. B. Sprague, (1998)

[KK] = A. Kataev and V. Kim, (2008)



The mass evolution is described by equation
m(µ)
m(µ0)

= c(as(µ))
c(as(µ0))

where
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γ̄i = γi/β0, β̄i = βi/β0

Important concept: RGI mass

mRGI ≡ m(µ0)/c(as(µ0))

is µ and scheme independent; in any (mass-independent) scheme

lim
µ→∞

as(µ)
−γ̄0 m(µ) = mRGI



The function c(x) is used, e.g, by the ALPHA lattice collaboration to find the (MS)
mass of the strange quark at a lower scale from the RGI mass determined from lattice
simulations

Example (setting as(µ = 2GeV) = αs(µ)
π = .1; h counts loops)

ms(2GeV) = m̂s · (as(2GeV))
4
9 ·

(

1 + 0.0895h2 + 0.0137h3 + 0.00195h4 + (0.00157− .000011β4)h
5
)

β(nf = 3) = −
(

β0 =
4

9

)

·
{

as + 1.777 a2s + 4.4711 a3s + 20.990 a4s + β4 a
5
s

}

It is natural to estimate β4 as sitting in the interval 50 – 100 Note that for any
reasonable value of β4 (positive and ≤ 200) the (apparent) convergency of the above
series is quite good even at rather small energy scale



Higgs Decay into b̄b quarks

Γ(H → f̄f) =
GF MH

4
√
2π

m2
f(µ)R

S(s = M2
H, µ)

RS is the spectral density of the scalar correlator and is known to α4
s

/P. Baikov, J. Kühn, K.Ch. (2006)/

RS(s = M2
H, µ = MH) = 1 + 5.667 as + 29.147 a2s + 41.758 a3s−825.7 a4s

= 1 + 0.2041 + 0.0379 + 0.0020−0.00140

where we set as = αs/π = 0.0360 (for the Higgs mass value MH = 125 GeV and
αs(MZ) = 0.118)

mb(µ = MH) is to be obtained with RG running from mb(µ = 10GeV) and, thus,
depends on β and γm:

δm2
b(MH)

m2
b(MH)

= −1.4 · 10−4(b̄4 = 0)| − 4.3 · 10−4(b̄4 = 100)| − 7.3 · 10−4(b̄4 = 200)



If we set µ = MH, then the combined effect of O(α4
s) terms as coming from the

5-loop running and 4-loop contribition to RS on

Γ(H → b̄b) =
GF MH

4
√
2π

m2
f(MH)R

S(s = M2
H,MH)

is around -2h. This should be contrasted to the parametric uncertainties

as coming from⋆ αs(MZ) (± 6 h) and⋆⋆ m2
b(µ = 10GeV) (± 9 h)

(we neglect higher order QCD corrections)

Conclusion: our α4
s terms are of no phenomenological relevancy at present. BUT, the

situation could be different if the project of TLEP⋆⋆⋆ is implemented. For instance,
the uncertainity in αs(MZ) will be reduced to ±2h . . .

⋆ A. Pich, ”Review of αs detreminations”, arXiv:1303.2262
⋆⋆ K. Ch., J. H. Kühn, A. Maier, P. Maierhöfer, P. Marquard, M. Steinhauser, C.
Sturm, ”Charm and Bottom Quark Masses: an Update”, arXiv:0907.2110
⋆⋆⋆ M. Bice et al., ”First Look at the Physics Case of TLEP”, arXiv:1308.6176



How reliable are available results at ≤ 4 loops and 5 loops?

A lot of things might go wrong in a multyloop calculation: from

• a trivial normalization factor buried somewhere in your programs and not expanded
deeply enough in ǫ

• . . .

• . . .

• to an error in FORM which shows itself irregularly:

”it affected mainly very big programs that needed the fourth stage of
the sorting rather intensively and it showed itself mainly with TFORM with
a probability of occurring proportional to at least W 3 if W is the number of
workers.” (by Jos Vermaseren from

http://www.nikhef.nl/~form/forum/viewtopic.php?f=3&t=115 +

)



Four loop RG

At 4 loops every calculation was repeated (and confirmed!) by independent

computation(s):

4-loop QED β function (in QCD) + R-ratio at α3
s: an original (Feynman gauge

result) /Gorishny, Larin, Kataev (1991)/ was confirmed 5 years later

/K. Ch. (1996), (general covariant gauge)/

4-loop QCD β function /T. van Ritbergen, J. Vermaseren, S .Larin, (1997)/

was confirmed 8 years later /M. Czakon, (2004)/ (general covariant gauge in

both cases)

4-loop quark anomalous dimension was computed 2 times (general covariant

gauge in both cases) once with massless and once with massive setups with

identical results

all master integrals apearing in 4-loop calculations (both massless props

and massive tadpoles) have been evaluated many times independently, both

analytically and numerically



Five loop RG

Here the situation is not so good: since 2002 we have performed many 5-loop RG
calculations:

Phys.Rev.Lett. 88 (2002) 01200
Phys.Rev.Lett. 95 (2005) 012003
Phys.Rev.Lett. 96 (2006) 012003
Phys.Rev.Lett. 97 (2006) 061803
Phys.Rev.Lett.101:012002,2008

Phys.Rev.Lett. 102 (2009) 212002 ← 3-loop formfactor

Phys.Rev.Lett.104:132004,2010
Phys.Rev.Lett. 108 (2012) 222003
JHEP 1207 (2012) 017
Phys.Lett. B714 (2012) 62-65

and (almost) no one has yet been confirmed in full by an independent computation. An
exception is quark and gluon form factors to three loops in massless QCD: reduction
to masters was done in 2 independent ways (with BAICER and FIRE); the pole part
was found first by the Zeuthen group /S. Moch, J.A.M. Vermaseren, A. Vogt (2005)/

But: all master integrals apearing in 5-loop calculations (4-loop massless props) are
certainly correct (confirmed by 3 independent evaluations). What about reduction?



However, our calculations have passed successfully few highly nontrivial tests:

• reduction is done for generic space-time dimension D =⇒ sucessfull renormalization
checks all pole parts at D = 4− 2ǫ

• The Crewther relation connecting 2 very different sets of diagrams four-loop
box-type diagrams (in propagator kinematics) versus five loop propagators

• gauge independence (where applicable, that is for coefficient functions appearing
in the Wilson OPE



Concluding Notes I:

• R∗ + Baikov Algorithm to reduce 4-loop p-integrals + Form (J. Vermaseren, M.
Tentyukov + . . . ) + known 4-loop masters (P. Baikov, K.Ch.) =⇒ the 5-loop RG
functions are in principle doable in any model.

• But: global representation of neccessary IR subtractions (that is on the level of
Green functions) strongly depends on the problem and is not always easy.

• The 5-loop quark anomalous dimension γm QCD is finished. The phenomenological
implications are not not very dramatic.

• The 5-loop QCD β-function is significantly more complicated; first results are
expected in a year or so.



Concluding Notes II:

• Truly remarkable fact: N=4 SYM theory seems to be simpler than QCD: ”Konishi”
(anomalous dimension of a specific operator in N=4 SYM) in 5-loop has been
recenltly computed with a via IRR + p-intergrals + Laporta machine + a lot of
ingenuity; the result confirms the prediction from non-perturbative methods
(“Five-loop Konishi in N=4 SYM”, B. Eden, P. Heslop, G. Korchemsky, V. Smirnov,
E. Sokatchev, arXiv:1202.5733)

• There are some theoretical problems requiring analytical evaluation of 6-loop
anomalous dimensions: e.g. ”Konishi” in 6-loop is already available from non-
perturbative methods:

Six and seven loop Konishi from Luscher corrections. Z. Bajnok, R. Janik e-Print:
arXiv:1209.0791

Here the main problem is the very reduction to masters (the way to compute the
resulting masters is known /K.Ch. and Baikov, 2010). BUT: shear # of contributing
diagrams in “normal” gauge theories would presumably be prohibitively large for,
say, QCD 6-loop β-function.


