Towards QCD running in 5 loops: quark mass anomalous dimension

Konstantin Chetyrkin
in collaboration to

Pavel Baikov (MSU) \& Johann Kühn (KIT)

QUARKS 2014

RENORMALIZATION-GROUP (all started in 1953)

Stückelberg and Petermann; Gell-Mann and Low; Bogoliubov and Shirkov
and after only 50 years

Nobel Prise in Physics in 2004!

$$
\beta_{0}=\frac{33-2 \mathrm{~N}_{\mathrm{F}}}{12}
$$

Multiloop RG: Current Status

Any 5-loop RG functions (that is β-functions and anomalous dimensions) are analytically computable in any model (in the minimal subtraction scheme)

Recent advances at 5-loop level:

- QED-beta function (including corrections due to the quark-gluon interaction) / Baikov, K. Ch. , P, J. Kühn, J. Rittinger, 2008-2012/
- ghost and quark field and quark mass anomalous dimensions as well as (a significant piece of) ghost-ghost-gluon vertex anomalous dimension are ready /this talk/
- but the full QCD β-function is not (yet!) available (gluon field renormalization \rightarrow main technical challenge, due to \# of diagrams and over-complicated IR structure)

Motivations:

$\beta\left(\alpha_{s}\right)$ and $\gamma_{m}\left(\alpha_{s}\right)$ at 5 loops will be useful for

- the analysis of the τ-decay rate within so-called CIPT (a host of new terms will be added to the current theoretical prediction)
- various QCD "optimization" schemes like PMS and PMC (the Principles of Maximal Sensitivity P. Stevenson, 1981) and of Maximal Conformality (S. Brodsky, X. G. Wu,L. Di Giustino,M. Mojaza, 2012) ... will benefit from the knowledge of β-function at 5 loops
- construction of a self-consistent prediction for $H \rightarrow \bar{b} b / \bar{c} c$ at $\mathcal{O}\left(\alpha_{s}^{4}\right)$ from the corresponding result for the scalar correlator /P. Baikov, K.Ch. and J. Kühn, (2006)/ and the quark mass anom. dim. $\gamma_{m}\left(\alpha_{s}\right)$ (also at 5 loops)/this talk/
- construction of a self-consistent prediction for $\alpha_{s}\left(M_{Z}\right)$ from $\alpha_{s}\left(M_{\tau}\right)$ and the decoupling equation for α_{s} (known to 4 loops /K.Ch., J.Kühn and Ch. Sturm; Y. Schröder and M. Steinhauser (2006)/)
- lattice (description of running vertexes and propagators for intermediate momentum transfer)

$$
\begin{aligned}
\mathcal{L}_{R}^{Q C D} & =-\frac{1}{4} Z_{3}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2}-\frac{1}{2} g Z_{1}^{3 g}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right)\left(A_{\mu} \times A_{\nu}\right)^{a}-\frac{1}{4} g^{2} Z_{1}^{4 g}\left(A_{\mu} \times A_{\nu}\right)^{2} \\
& +Z_{3}^{c} \partial_{\nu} \bar{c}\left(\partial_{\nu} c\right)+g Z_{1}^{c c g} \partial^{\mu} \bar{c}(A \times c)+Z_{2} \bar{\psi} \mathbf{i} \not \partial \psi-Z_{\bar{\psi} \psi} m_{f} \bar{\psi} \psi+g Z_{1}^{\psi \psi g} \bar{\psi} A \psi
\end{aligned}
$$

Minimal sets of Z-factors to compute β and $\gamma_{m}: Z_{3}, Z_{3}^{c}, Z_{1}^{c c g}$ and $Z_{3}, Z_{2}, Z_{\bar{\psi} \psi}$
Most important property of Z-factors (in minimal schemes based on CDR): they depend only on $\epsilon=2-D / 2$ (J. Collins, 1975). This leads to tremendous simplifications in calculations \rightarrow multiloop completely analytical calculations are really possible.

Let us concentrate on $Z_{\bar{\psi} \psi}$ and consider consider vertex function

$$
\Gamma\left(a_{s}, q^{2}\right)=Z_{\bar{\psi} \psi}+Z_{\bar{\psi} \psi} \delta \Gamma\left(a_{s}, q^{2}\right)
$$

of the scalar quark current

Suppose we want to compute L-loop contribution to $Z_{\bar{\psi} \psi}$. There are (at least) 4 ways to do it:

1. set 1 of 2 ext. momenta to zero \rightarrow (the poles of) L-loop p-integrals (massless propagators) tobe computed. That is how first 2-loop RG calculations in QCD were done /D. R.T Jones, 1974/.
2. set all ext. momenta to zero and introduce an universal mass to all propagators (including gluon!) \rightarrow (the poles of) L-loop m-integrals (massive tadpoles) to be computed. That is how the first 4-loop calculation of the QCD β-function was done /van Ritbergen, T., Vermaseren, J. and Larin, S. (1997)/
3. set all ext. momenta to zero and introduce a mass into only one (but properly chosen to avoid IR singularities) propagator \rightarrow (L-1)-loop p-integrals (including their finite part) to be computed /A. Vladimirov (1978)/ That is how the first 3-loop calculation of the QCD β-function was done /Tarasov, O., Vladimirov, A. and Zharkov, A. (1980)/. Problems: difficult to automatize; not applicable to all diagrams.
4. the same as 3. but IR singularities are removed recursively with so-called R^{*} operation /K.Ch. V. Smirnov (1984)/. Features: applicable for every possible diagram, automatization is possible but not simple (due to involved structure of UV subtractions (not IR ones!))

An example of a diagram which can not be computed with the 3-rd method

Here two well-separated IR divergencies in loop-integration makes problems. One, of course, could regulate it with a small "auxiliary" mass: $\frac{1}{p^{4}} \rightarrow \frac{1}{\left(p^{2}+m^{2}\right)^{2}}$ but that will complicates integration, leading to a 2 -scale integral.

The idea how to overcome the problem (in fact, it came from the Bogolyubov's distributional approach to QFT) is very simple: to subtract the unwanted IR divergency with the help of an IR counterterm but now local in position space:

$$
\frac{1}{p^{4}} \rightarrow \frac{1}{\left(p^{4}\right)}-\frac{c}{\epsilon} \delta^{D}(p)
$$

with the constant \boldsymbol{c} choosen such that there would be no IR poles coming from the integration region of small momentum p.

After such a replacement no IR poles survive and integrations are made easily.

At 5-loop level only the 4-th way is currently feasible
with the use of the following tools:

- global solution of the combinatorics of R^{*} operation (rather involved and problem specific)
- the Baikov's way of doing reduction with the help of $1 / D$ expansion of the corresponding coefficient functions in front of masters (analytically known from two! independent calculations /K.Ch, P.Baikov (2010), R. Lee, V. Smirnov (2012)/

- ParFORM and T-FORM:

M. Tentyukov et al. "ParFORM: Parallel Version of the Symbolic Manipulation Program", PoS ACAT2010 (2010) 072
M. Tentyukov, H. M. Staudenmaier, and J. A. M. Vermaseren. "ParFORM: Recent development". Nucl. Instrum. Meth., A559:224-228, 2006.
M. Tentyukov and J. A. M. Vermaseren. "The multithreaded version of FORM", hep-ph/0702279"
in order to effectively implement the $1 / D$ expansion

Calculation of the ghost field anomalous dimension $\gamma_{3}^{c}=\sum_{i=0}^{\infty}\left(\gamma_{3}^{c}\right)_{i}\left(\frac{\alpha_{s}}{4 \pi}\right)^{i+1}$ at 5 loops has been just finished:

$$
\begin{aligned}
& \left(\gamma_{3}^{c}\right)_{4}=\frac{193301287}{2048}+\frac{19562145}{128} \zeta_{3}+\frac{2060829}{128} \zeta_{3}^{2}-\frac{1101573}{16} \zeta_{4}-\frac{66632427}{128} \zeta_{5}+\frac{36327825}{256} \zeta_{6}+\frac{140900823}{512} \zeta_{7} \\
& +\quad n_{f}\left[-\frac{633704171}{27648}-\frac{5166473}{144} \zeta_{3}-\frac{233519}{64} \zeta_{3}^{2}+\frac{764949}{32} \zeta_{4}+\frac{32902291}{384} \zeta_{5}-\frac{4123825}{128} \zeta_{6}-\frac{14425075}{384} \zeta_{7}\right] \\
& +\quad n_{f}^{2}\left[\frac{1326547}{3456}+\frac{1739167}{864} \zeta_{3}+\frac{2659}{6} \zeta_{3}^{2}-\frac{13485}{8} \zeta_{4}-\frac{8074}{9} \zeta_{5}+\frac{16775}{12} \zeta_{6}\right] \\
& +\quad n_{f}^{3}\left[\frac{342895}{7776}+\frac{1211}{18} \zeta_{3}+\frac{5}{2} \zeta_{4}-\frac{284}{3} \zeta_{5}\right]+n_{f}^{4}\left[-\frac{65}{108}-\frac{20}{27} \zeta_{3}+\frac{4}{3} \zeta_{4}\right]
\end{aligned}
$$

Numerically ($a_{s} \equiv \frac{\alpha_{s}}{\pi}$):

$$
\gamma_{3}^{c}\left(n_{f}=3\right)=\frac{3}{8}\left(a_{s}+2.4375 a_{s}^{2}+4.8867 a_{s}^{3}+19.980 a_{s}^{4}+122.246 a_{s}^{5}\right)
$$

For generic n_{f} :

$$
\begin{aligned}
\quad & \gamma_{3}^{c}=\frac{3}{8}\left\{a_{s}+a_{s}^{2}\left(3.063-0.208 n_{f}\right)+a_{s}^{3}\left(10.556-1.768 n_{f}-0.0405 n_{f}^{2}\right)\right. \\
+ & a_{s}^{4}\left(49.325-10.957 n_{f}+0.36562 n_{f}^{2}+0.0087 n_{f}^{3}\right) \\
& \left.+a_{s}^{5}\left(283.632-70.979 n_{f}+5.498 n_{f}^{2}+0.0769 n_{f}^{3}-0.000128038 n_{f}^{4}\right)\right\}
\end{aligned}
$$

Calculation of the anomalous dimension of gluon-ghost-ghost vertex

$$
\gamma_{1}^{c c g}=\sum_{i=0}^{\infty}\left(\gamma_{1}^{c c g}\right)_{i}\left(\frac{\alpha_{s}}{4 \pi}\right)^{i+1}
$$

is under way; the first result is ready (in "next ${ }^{2}$-to-renormalon" approximation, Feynman gauge):
$\left(\gamma_{1}^{c c g}\right)_{4}=n_{f}^{3}\left[\frac{2989}{864}+\frac{5}{3} \zeta_{3}-6 \zeta_{4}\right]+n_{f}^{2}\left[-\frac{572723}{2304}-\frac{8105}{16} \zeta_{3}+\frac{3789}{32} \zeta_{4}+\frac{2109}{8} \zeta_{5}\right]+\mathcal{O}\left(n_{f}^{1}, n_{f}^{0}\right)$

Note that the leading renormalon contribution $\approx n_{f}^{4} a_{s}^{5}$ vanishes (in any gauge!) due to the Taylor theorem which states, in paricularly, that $\gamma_{1}^{c c g} \equiv 0$ in the Landau gauge

Quark Mass Anomalous Dimension $\gamma_{m}=-\sum_{i \geq 0} \gamma_{i} a_{s}^{i}$: history

3-loops: / O, Tarasov (82, with IRR reduced to 2-loop p-integrals);
3-loops: /S. Larin/ (92; direct evaluation of 3-loop p-integrals with MINCER)
4-loops: /K. Chetyrkin/ (97; with R^{*}-operation all Fl's were reduced to 3-loop p-integrals; the latter were performed with MINCER)
4-loops: /J.A.M. Vermaseren, S.A. Larin, T. van Ritbergen/ (97; direct evaluation of the completely massive 4-loop tadpoles /via a kind of Laporta machine (?)/)

$$
\begin{aligned}
\gamma_{0}=1 \quad \gamma_{1}= & \frac{1}{16}\left\{\frac{202}{3}+n_{f}\left[-\frac{20}{9}\right]\right\}, \gamma_{2}=\frac{1}{64}\left\{1249+n_{f}\left[-\frac{2216}{27}-\frac{160}{3} \zeta(3)\right]+n_{f}^{2}\left[-\frac{140}{81}\right]\right\} \\
\gamma_{3} & =\frac{1}{256}\left\{\frac{4603055}{162}+\frac{135680}{27} \zeta(3)-8800 \zeta(5)\right. \\
& +n_{f}\left[-\frac{91723}{27}-\frac{34192}{9} \zeta(3)+880 \zeta(4)+\frac{18400}{9} \zeta(5)\right] \\
& \left.+n_{f}^{2}\left[\frac{5242}{243}+\frac{800}{9} \zeta(3)-\frac{160}{3} \zeta(4)\right]+n_{f}^{3}\left[-\frac{332}{243}+\frac{64}{27} \zeta(3)\right]\right\} .
\end{aligned}
$$

$$
5 \text { loop term in } \gamma_{m}=-\sum_{-i \geq 0} \gamma_{i} a_{s}^{i}
$$

New result (preliminary)

$$
\begin{aligned}
& \gamma_{4}=\frac{-1}{4^{5}}\left\{-\frac{99512327}{162}-\frac{46402466}{243} \zeta_{3}-96800 \zeta_{3}^{2}+\frac{698126}{9} \zeta_{4}\right. \\
& +\frac{231757160}{243} \zeta_{5}-242000 \zeta_{6}-412720 \zeta_{7} \\
& +n_{f}\left[\frac{150736283}{1458}+\frac{12538016}{81} \zeta_{3}+\frac{75680}{9} \zeta_{3}^{2}-\frac{2038742}{27} \zeta_{4}\right. \\
& \left.-\frac{49876180}{243} \zeta_{5}+\frac{638000}{9} \zeta_{6}+\frac{1820000}{27} \zeta_{7}\right] \\
& +n_{f}^{2}\left[-\frac{1320742}{729}-\frac{2010824}{243} \zeta_{3}-\frac{46400}{27} \zeta_{3}^{2}+\frac{166300}{27} \zeta_{4}+\frac{264040}{81} \zeta_{5}-\frac{92000}{27} \zeta_{6}\right] \\
& \left.+n_{f}^{3}\left[-\frac{91865}{1458}-\frac{12848}{81} \zeta_{3}-\frac{448}{9} \zeta_{4}+\frac{5120}{27} \zeta_{5}\right]+n_{f}^{4}\left[\frac{260}{243}+\frac{320}{243} \zeta_{3}-\frac{64}{27} \zeta_{4}\right]\right\}
\end{aligned}
$$

Boxed terms are in full agreement with predication made on the base of the $1 / n_{f}$ method /M Ciuchini SF Derkachov IA Gracev A N Manashov (2000)/

Numerical result:

$$
\gamma_{4}^{\text {exact }}=559.71-143.6 n_{f}+7.4824 n_{f}^{2}+0.1083 n_{f}^{3}-0.00008535 n_{f}^{4}
$$

should be compared with a prediciton

$$
\gamma_{4}^{A P A P}=530-143 n_{f}+6.67 n_{f}^{2}+0.037 n_{f}^{3}-0.00008535 n_{f}^{4}
$$

which is 15 years old result (obtained with the "Asymptotic Pade Approximants" /APAP/ method) by J. Ellis, I. Jack, D.R.T. Jones, M. Karliner, M. A. Samuel, Phys. Rev. D57 (1998) 2665

Unfortunately, this strikingly good agreement does not survive for fixed values of n_{f} :

n_{f}	3	4	5	6
$\left(\gamma_{m}\right)_{4}^{\text {exact }}$	198.899	111.579	41.807	-9.777
$\left(\gamma_{m}\right)_{4}^{\text {APAP }}[\mathrm{EJJKS}]$	162.0	67.1	-13.7	-80.0
$\left(\gamma_{m}\right)_{4}^{\text {APAP }}[\mathrm{ESFM}]$	163.0	75.2	12.6	12.2
$\left(\gamma_{m}\right)_{4}^{\text {APAP }}[\mathrm{KK}]$	164.0	71.6	-4.8	-64.6

where we compare The exact results for $\left(\gamma_{m}\right)_{4}$ together with the predictions made with the help of the original APAP method and its two somewhat modified versions:
[EJJKS] = J. R. Ellis, I. Jack, D. Jones, M. Karliner, and M. Samuel, (1997)
$[$ ESFM $]=$ V. Elias, T. G. Steele, F. Chishtie, R. Migneron, and K. B. Sprague, (1998) $[K K]=$ A. Kataev and V. Kim, (2008)

The mass evolution is described by equation $\frac{m(\mu)}{m\left(\mu_{0}\right)}=\frac{c\left(a_{s}(\mu)\right)}{c\left(a_{s}\left(\mu_{0}\right)\right)}$ where

$$
\begin{aligned}
c(x)= & \exp \left\{\int \frac{d x^{\prime}}{x^{\prime}} \frac{\gamma_{m}\left(x^{\prime}\right.}{\beta\left(x^{\prime}\right)}\right\}=(x)^{\overline{\gamma_{0}}}\left\{1+\left(\overline{\gamma_{1}}-\overline{\beta_{1}} \overline{\gamma_{0}}\right) x\right. \\
+ & \frac{1}{2}\left[\left(\overline{\gamma_{1}}-\overline{\beta_{1}} \overline{\gamma_{0}}\right)^{2}+\overline{\gamma_{2}}+\bar{\beta}_{1}^{2} \overline{\gamma_{0}}-\overline{\beta_{1}} \overline{\gamma_{1}}-\overline{\beta_{2}} \overline{\gamma_{0}}\right] x^{2} \\
+ & {\left[\frac{1}{6}\left(\overline{\gamma_{1}}-\bar{\beta}_{1} \overline{\gamma_{0}}\right)^{3}+\frac{1}{2}\left(\overline{\gamma_{1}}-\overline{\beta_{1}} \overline{\gamma_{0}}\right)\left(\overline{\gamma_{2}}+\bar{\beta}_{1}^{2} \overline{\gamma_{0}}-\overline{\beta_{1}} \overline{\gamma_{1}}-\overline{\beta_{2}} \overline{\gamma_{0}}\right)\right.} \\
& \left.\left.+\frac{1}{3}\left(\bar{\gamma}_{3}-\bar{\beta}_{1}^{3} \overline{\gamma_{0}}+2 \overline{\beta_{1}} \overline{\beta_{2}} \overline{\gamma_{0}}-\overline{\beta_{3}} \overline{\gamma_{0}}+\overline{\beta_{1}} \overline{\gamma_{1}}-\overline{\beta_{2}} \overline{\gamma_{1}}-\overline{\beta_{1}} \overline{\gamma_{2}}\right)\right] x^{3}+\mathcal{O}\left(x^{4}\right)\right\}
\end{aligned}
$$

$$
\bar{\gamma}_{i}=\gamma_{i} / \beta_{0}, \bar{\beta}_{i}=\beta_{i} / \beta_{0}
$$

Important concept: RGI mass

$$
m^{R G I} \equiv m\left(\mu_{0}\right) / c\left(a_{s}\left(\mu_{0}\right)\right)
$$

is μ and scheme independent; in any (mass-independent) scheme

$$
\lim _{\mu \rightarrow \infty} a_{s}(\mu)^{-\bar{\gamma}_{0}} m(\mu)=m^{R G I}
$$

The function $c(x)$ is used, e.g, by the ALPHA lattice collaboration to find the ($\overline{\mathrm{MS}}$) mass of the strange quark at a lower scale from the RGI mass determined from lattice simulations
Example (setting $a_{s}(\mu=2 \mathrm{GeV})=\frac{\alpha_{s}(\mu)}{\pi}=.1 ; h$ counts loops)

$$
\begin{gathered}
m_{s}(2 \mathrm{GeV})=\hat{m}_{s} \cdot\left(a_{s}(2 \mathrm{GeV})\right)^{\frac{4}{9}} \\
\left(1+0.0895 h^{2}+0.0137 h^{3}+0.00195 h^{4}+\left(0.00157-.000011 \bar{\beta}_{4}\right) h^{5}\right) \\
\beta\left(n_{f}=3\right)=-\left(\beta_{0}=\frac{4}{9}\right) \cdot\left\{a_{s}+1.777 a_{s}^{2}+4.4711 a_{s}^{3}+20.990 a_{s}^{4}+\bar{\beta}_{4} a_{s}^{5}\right\}
\end{gathered}
$$

It is natural to estimate $\bar{\beta}_{4}$ as sitting in the interval $50-100$ Note that for any reasonable value of $\bar{\beta}_{4}$ (positive and ≤ 200) the (apparent) convergency of the above series is quite good even at rather small energy scale

Higgs Decay into $\bar{b} b$ quarks

$$
\Gamma(H \rightarrow \bar{f} f)=\frac{G_{F} M_{H}}{4 \sqrt{2} \pi} m_{f}^{2}(\mu) R^{S}\left(s=M_{H}^{2}, \mu\right)
$$

R^{S} is the spectral density of the scalar correlator and is known to α_{s}^{4} /P. Baikov, J. Kühn, K.Ch. (2006)/

$$
\begin{aligned}
R^{S}\left(s=M_{H}^{2}, \mu=M_{H}\right) & =1+5.667 a_{s}+29.147 a_{s}^{2}+41.758 a_{s}^{3}-825.7 a_{s}^{4} \\
& =1+0.2041+0.0379+0.0020-0.00140
\end{aligned}
$$

where we set $a_{s}=\alpha_{s} / \pi=0.0360$ (for the Higgs mass value $M_{H}=125 \mathrm{GeV}$ and $\left.\alpha_{s}\left(M_{Z}\right)=0.118\right)$
$m_{b}\left(\mu=M_{H}\right)$ is to be obtained with RG running from $m_{b}(\mu=10 \mathrm{GeV})$ and, thus, depends on β and γ_{m} :

$$
\frac{\delta m_{b}^{2}\left(M_{H}\right)}{m_{b}^{2}\left(M_{H}\right)}=-1.4 \cdot 10^{-4}\left(\bar{b}_{4}=0\right)\left|-4.3 \cdot 10^{-4}\left(\bar{b}_{4}=100\right)\right|-7.3 \cdot 10^{-4}\left(\bar{b}_{4}=200\right)
$$

If we set $\mu=M_{H}$, then the combined effect of $\mathcal{O}\left(\alpha_{s}^{4}\right)$ terms as coming from the 5-loop running and 4-loop contribition to R^{S} on

$$
\Gamma(H \rightarrow \bar{b} b)=\frac{G_{F} M_{H}}{4 \sqrt{2} \pi} m_{f}^{2}\left(M_{H}\right) R^{S}\left(s=M_{H}^{2}, M_{H}\right)
$$

is around -2%. This should be contrasted to the parametric uncertainties as coming from ${ }^{\star} \alpha_{s}\left(M_{Z}\right)(\pm 6 \%)$ and** $m_{b}^{2}(\mu=10 \mathrm{GeV})(\pm 9 \%)$ (we neglect higher order QCD corrections)

Conclusion: our α_{s}^{4} terms are of no phenomenological relevancy at present. BUT, the situation could be different if the project of TLEP*** is implemented. For instance, the uncertainity in $\alpha_{s}\left(M_{Z}\right)$ will be reduced to $\pm 2 \% \ldots$

* A. Pich, "Review of α_{s} detreminations", arXiv:1303.2262
** K. Ch., J. H. Kühn, A. Maier, P. Maierhöfer, P. Marquard, M. Steinhauser, C. Sturm, "Charm and Bottom Quark Masses: an Update", arXiv:0907.2110 *** M. Bice et al., "First Look at the Physics Case of TLEP", arXiv:1308.6176

How reliable are available results at ≤ 4 loops and 5 loops?

A lot of things might go wrong in a multyloop calculation: from

- a trivial normalization factor buried somewhere in your programs and not expanded deeply enough in ϵ
- ...
- ...
- to an error in FORM which shows itself irregularly:
"it affected mainly very big programs that needed the fourth stage of the sorting rather intensively and it showed itself mainly with TFORM with a probability of occurring proportional to at least W^{3} if W is the number of workers." (by Jos Vermaseren from
http://www.nikhef.nl/~form/forum/viewtopic.php?f=3\&t=115 +
)

Four loop RG

At 4 loops every calculation was repeated (and confirmed!) by independent computation(s):

4-loop QED β function (in QCD) $+R$-ratio at α_{s}^{3} : an original (Feynman gauge result) /Gorishny, Larin, Kataev (1991)/ was confirmed 5 years later /K. Ch. (1996), (general covariant gauge)/

4-loop QCD β function /T. van Ritbergen, J. Vermaseren, S .Larin, (1997)/ was confirmed 8 years later /M. Czakon, (2004)/ (general covariant gauge in both cases)

4-loop quark anomalous dimension was computed 2 times (general covariant gauge in both cases) once with massless and once with massive setups with identical results
all master integrals apearing in 4-loop calculations (both massless props and massive tadpoles) have been evaluated many times independently, both analytically and numerically

Five loop RG

Here the situation is not so good: since 2002 we have performed many 5-loop RG calculations:

Phys.Rev.Lett. 88 (2002) 01200
Phys.Rev.Lett. 95 (2005) 012003
Phys.Rev.Lett. 96 (2006) 012003
Phys.Rev.Lett. 97 (2006) 061803
Phys.Rev.Lett.101:012002,2008
Phys.Rev.Lett. 102 (2009) $212002 \leftarrow$ 3-loop formfactor
Phys.Rev.Lett.104:132004,2010
Phys.Rev.Lett. 108 (2012) 222003
JHEP 1207 (2012) 017
Phys.Lett. B714 (2012) 62-65
and (almost) no one has yet been confirmed in full by an independent computation. An exception is quark and gluon form factors to three loops in massless QCD: reduction to masters was done in 2 independent ways (with BAICER and FIRE); the pole part was found first by the Zeuthen group /S. Moch, J.A.M. Vermaseren, A. Vogt (2005)/
But: all master integrals apearing in 5-loop calculations (4-loop massless props) are certainly correct (confirmed by 3 independent evaluations). What about reduction?

However, our calculations have passed successfully few highly nontrivial tests:

- reduction is done for generic space-time dimension $D \Longrightarrow$ sucessfull renormalization checks all pole parts at $D=4-2 \epsilon$
- The Crewther relation connecting 2 very different sets of diagrams four-loop box-type diagrams (in propagator kinematics) versus five loop propagators
- gauge independence (where applicable, that is for coefficient functions appearing in the Wilson OPE

Concluding Notes I:

- $R^{*}+$ Baikov Algorithm to reduce 4-loop p-integrals + Form (J. Vermaseren, M. Tentyukov $+\ldots$) + known 4-loop masters (P. Baikov, K.Ch.) \Longrightarrow the 5-loop RG functions are in principle doable in any model.
- But: global representation of neccessary IR subtractions (that is on the level of Green functions) strongly depends on the problem and is not always easy.
- The 5-loop quark anomalous dimension γ_{m} QCD is finished. The phenomenological implications are not not very dramatic.
- The 5-loop QCD β-function is significantly more complicated; first results are expected in a year or so.

Concluding Notes II:

- Truly remarkable fact: N=4 SYM theory seems to be simpler than QCD: "Konishi" (anomalous dimension of a specific operator in $N=4$ SYM) in 5-loop has been recenltly computed with a via IRR + p-intergrals + Laporta machine + a lot of ingenuity; the result confirms the prediction from non-perturbative methods ("Five-loop Konishi in N=4 SYM", B. Eden, P. Heslop, G. Korchemsky, V. Smirnov, E. Sokatchev, arXiv:1202.5733)
- There are some theoretical problems requiring analytical evaluation of 6-loop anomalous dimensions: e.g. "Konishi" in 6-loop is already available from nonperturbative methods:

Six and seven loop Konishi from Luscher corrections. Z. Bajnok, R. Janik e-Print: arXiv:1209.0791

Here the main problem is the very reduction to masters (the way to compute the resulting masters is known /K.Ch. and Baikov, 2010). BUT: shear \# of contributing diagrams in "normal" gauge theories would presumably be prohibitively large for, say, QCD 6-loop β-function.

