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Abstract

We discuss a Brans-Dicke model with a cosmological constant, negative value of the w
parameter and an arbitrary (in general non-vanishing) scale factor at the Big Bang. The
Friedman equations for a flat universe are considered. The current observational values for
Hubble constant H0 and deceleration parameter q0 play the role of initial conditions. We
follow the approach of [1] in order to solve field equations analytically. In Ref. [1] only
positive values of w were considered, we extend the study to a complete set of possible w
values. Our main result is that the scale factor (during it’s evolution back in time direction)
may not vanish, unlike in the standard ΛCDM case. In other words, the considered model
demonstrates a cosmological bounce instead of the initial singularity. The famous formula
(24), that leads to the bounce, is valid only for the dust-filled universe with p = 0 and,
therefore, is not adequate for the Early Universe hot stage when the bounce happens. So,
our results are qualitative in nature and must be used to obtain initial values for the hot
stage of the Universe.

1 Introduction

The cosmic acceleration is now a well observationally established fact [2, 3, 4, 5, 6, 7], however
it’s physical reasons remain open. So, the hence the most studied model for the moment is
cold dark matter one with cosmological constant (ΛCDM). Providing a good quantitative
agreement with observational data, this model however does not explain the nature of the dark
matter and dark energy. Another weakness of ΛCDM is the absence of explanation of the
smallness of Λ value if it is assumed to be the so-called “vacuum energy”. All these arguments
lead to the idea of a dynamical theory of dark energy creation (see for example [8]). the most
widely discussed candidates are quintessence (a slowly rolling scalar field [9]) and higher order
curvature gravity (including so-called f(R) gravity models [10]).

Brans-Dicke model (BD) is one of the first gravity models with a scalar field [11]. It was
suggested in 1961 and contains an additional parameter ω whose value has to be determined
by observational data. Large values of w mean an important contribution from the tensor part
(Ricci scalar), smaller values of w mean an increasing role for the scalar field contribution. In the
limit |w| → ∞ BD theory leads to General Relativity (GR). In BD model the value of Newton’s
constant is proportional to the inverse scalar field (G ≈ 1/φ), proving additional coupling
between the model parameters. The most accurate limit on w comes from Cassini-Huygens
mission data on post-Newtonian parameter γ and is |W | > 50000 [12].
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BD theory is the most natural GR extension. It is interesting because, firstly, this model
could be the low energy effective limit of grand unification (and super unification) approaches
(from latest LHC data (see [14]) this possibility is not completely closed yet). Second, because
the scalar field in BD theory can be reinterpreteted as a dilation field in string theory. Finally,
because BD model is the simplest GR extension and is useful to investigate any supertheory, so
as to gauge the difference with GR [13]. In addition, BD gravity is widely used in cosmology as
one needs a scalar field for inflation and such a filed is anyway necessary in the BD model. A
large set of inflationary models [15, 16, 17] is based on BD gravity and more generic scalar-tensor
approaches. Brans-Dicke theory is also closely related to the widely discussed f(R) gravity (see
for example [18]).

It is necessary to underline that there is no accelerated expansion in the standard version of
the BD model, so, one has to study it’s extended versions. One of the most common extensions
is a scalar field potential addition. As the accurate shape of this potential is not known yet
[20], one can consider a Λ-term as the effective contribution instead of a potential (so we obtain
BDΛ model). The explanation of the Λ-term smallness in the framework of BDΛ is possible
and was suggested in [21]. In Ref. [22], with the help of scalar field in BDΛ context, a dark
matter hallo around galaxies is modeled.

An analytical accurate solution for Friedman equations in the BDΛ model was also obtained
in Ref. [1] where positive values of ω and initial conditions for the scale factor in the form
a(tmin) = 0, where tmin is Big Bang time, were considered. Partial solutions in this model
with scalar field power dependence versus the scale factor were presented in [23, 24, 25, 26].
Vacuum solutions were obtained in [27, 28, 29]. Some papers discussed a Λ-term dependence as
a function of the scalar field (for example, [30]). Numerical integration and stability analysis of
BDΛ+matter solutions were carried out in [31]. Big Rip solution in BDΛ is discussed in [32].
The analytical solution in the pure BD model with negative w, avoiding the initial singularity,
was obtained in 1973 by Gurevich et al. [19]. There is no cosmic acceleration in the Gurevich
et al. solution, so, nowadays one has to extend BD theory to include cosmic acceleration. In
this paper we therefore study the Einstein-Friednman equation solutions in BDΛ theory for
w < 0 with a scale factor with initial value a(tmin) = amin. Generally amin 6= 0. Friedman
equations are studied for a flat Universe. We take the current values for Hubble parameter
and its derivative (deceleration parameter) as their initial conditions. In our study, we use
the approach suggested in [1]. We would like to point out that only positive values of w
are considered in [1], so, our solution with w < 0 represents a new branch. As opposed to the
standard ΛCDM -model, in the considered case, the scale factor never vanishes during backward
time evolution. A so-called “bounce” (a snap back from the minimal value of amin) corresponds
to this situation. The expression (24) leading to the bounce is obtained for a cold Universe with
p = 0 and is not valid for a hot Universe. Therefore all the values in the bounce region are only
qualitative estimates for the initial values for the transition to the hot stage.

This paper is organized as follows:
in section 2 we discuss the choice of the space-time metric and the corresponding field equations;
in section 3 the initial values for cosmological parameters are obtained; in section 4 we obtain an
analytical solution with a bounce for a dust-filled universe (p = 0); section 5 contains a prelim-
inary discussion of the results of section 4; in section 6 we explore the case of a ultrarelativistic
state of matter (hot phase); section 7 is devoted to the conclusions.
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2 Field equations

The Friedmann-Robertson-Walker (FRW) metrics reads1:

ds2 = dt2 − a(t)2
[

dr2

1 − kr2
+ r2dΩ2

]

, (1)

where k = 0, ±1.
The action of the BD-Λ theory can be written as:

S =
1

16π

∫

d4x
√−g

[

Φ(R + 2Λ)

− w

Φ
gµν∂µΦ∂νΦ + 16πLmatter

]

. (2)

Here w is the BD theory parameter, Φ(t) is the scalar field, Λ is the cosmological constant 2.
Variation of the action with respect to the metric gµν and the scalar field Φ gives the

following field equations:

Gµν =
8π

Φ
Tµν + Λgµν

+
w

Φ2

(

∂µΦ∂νΦ − 1

2
gµνgσλ∂σΦ∂λΦ

)

+
∇µ∇νΦ − gµν∇λ∇λΦ

Φ
, (3)

8π

Φ
T µ

µ + 2Λ =
3 + 2w

Φ
∇λ∇λΦ, (4)

where ∇µ is a covariant derivative,

Gµν = Rµν − 1

2
Rgµν ,

Tµν = (ρ + p)uµuν − pgµν ,

∂µΦ = δt
µ∂tΦ. (5)

Here ρ(t) and p(t) are the matter density and pressure respectively, the stress-energy tensor
corresponds to a barotropic fluid, Gµν is the Einstein tensor.

Here it is convenient to introduce new dimensionless variables 3:

Φ(t) ≡ φ(t)/G0,

ε(t) ≡ ∂tφ/(
√

Λφ), (6)

H̃(t) ≡ H(t)/
√

Λ = ∂ta/(
√

Λa),

ρ̃(t) = 4πG0ρ/Λ,

p̃(t) = 4πG0p/Λ. (7)

1Here and below we set light speed c = 1.
2Λ here can differ from the one in ΛCDM theory.
3Here and below the present time is denoted by the subscript ”0”, so G0 is the the current value of the

gravitational constant. From now and further we consider the current time moment as the initial one, so that
t0 = 0. Current values of cosmological parameters are taken as initial conditions. New variables lead to φ0 = 1,
which is convenient for further calculations.
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Here H is the Hubble parameter, and H̃ is its dimensionless value. In these notations, Friedman
equations for a flat universe (k = 0) in a comoving frame (uµ = [1, 0, 0, 0]) are:

Gt
t

Λ
= 3H̃2 =

2ρ̃

φ
+ 1 +

w

2
ε2 − 3H̃ε, (8)

Gr
r

Λ
= 2 ˙̃H + 3H̃2 = −2p̃

φ
+ 1 − w

2
ε2 − φ̈

φ
− 2H̃ε. (9)

The Klein-Gordon equation (4) can be rewritten as:

2ρ̃ − 6p̃

φ
+ 2 = (3 + 2w)

[

φ̈

φ
+ 3H̃ε

]

. (10)

Here and below the dot denotes the derivative w.r.t. the dimensionless time t̃ ≡
√

Λt.
Equations (8-10) lead to the continuity one in the form:

˙̃ρ

ρ̃ + p̃
+ 3H̃ = 0, (11)

which is consistent with the equivalence principle.

3 Initial values of the model parameters

We introduce the deceleration parameter q and the dimensionless matter density β for the initial
time in the following form:

˙̃H ≡ −(1 + q)H̃2,

β ≡ 4πG0(ρ0 − p0)

H2
0

=
ρ̃0 − p̃0

H̃2
0

. (12)

Combining the equations (8-10) to exclude ε and φ̈/φ, we obtain for p = 0 at the current
moment t0 the following equation:

w
[

H̃2
0 (2 − q0 − βz) − z

]2
− 2H̃2

0 (3z − 1)

+ H̃4
0 (6 − 6q0 − 6βz + 4β) = 0,

z ≡ 2 + 2w

3 + 2w
. (13)

This equation defines H0 as a function of β, q0 and ω. In the |w| >> 1 approximation4 equation
(13) yields:

1

H̃2
0

→ (2 − q0 − β) ±
√

2(1 + q0 − β)

w
. (14)

In the GR limit (|w| → ∞) the second term can be neglected, so, current cosmological param-
eters values ban be established as [33, 34]:
H0 ≈ 2.3 · 10−18sec−1, ρ0 ≈ 0.27 · 10−29g/cm3 (accounting for baryonic and dark matter), q0 ≈ −0.6.
We consider a dust-filled universe, thus neglecting the pressure. In the zeroth approximation
we rewrite the above expression for the cosmological constant:

Λ → (2 − q0)H
2
0 − 4πG0(ρ0 − p0) ≈ 11.3 · 10−36sec−2 (15)

4Here and below (unless otherwise noted) the arrow denotes the |w| >> 1 approximation.
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From the lunar ranging experiment (LLR) data [35] one can extract the following limitations:
|∂tG/G|(0) ≤ 4 · 10−20sec−1, hence |ε0| is a small value: |ε0| < 0.01. When |w| >> 1 we have:

H̃0 ≈ 0.68 , ρ̃0 ≈ 0.2 , β ≈ 0.4 . (16)

Combining (8)+(9), multiplying the result by 1/H̃2
0 and substituting φ̈/φ from (10), we obtain

for the initial moment t0 the following expression:

ε0

H̃0

=
1

H̃2
0

− (2 − q0 − β) +
β + 1/H̃2

0

3 + 2w
(17)

Substituting the H value from (14), we obtain the order of5 1/
√

|w|:

ε0 → ±
√

2(1 + q0 − β)

w(2 − q0 − β)
(18)

4 Dust-filled Universe solution

First of all we consider a dust-filled Universe, i.e. p = 0. As is Ref. [1], we rewrite field equations
using f ≡ φa3, and take into account that the expression (11) leads to ρ̃/φ = ρ̃0f0/f .

Considering f̈/f = φ̈/φ + 6H̃ε + 3 ˙̃H + 9H̃2, we combine field equations in the following way:
3
2 [(8)+(9)]+(10)/[6 + 4w]. This yields to:

f̈ − η2 (f + ρ̃0f0) = 0 , η2 ≡ 8 + 6w

3 + 2w
. (19)

The obtained equation can be straightforwardly integrated:

f(t̃)

f0
= c+E + c−/E − ρ̃0 , E(t̃) ≡ exp(ηt̃) . (20)

where c+ and c− can be easily obtained from the initial data.
One can rewrite (10) as:

2f + 2ρ̃0f0 = (3 + 2w)(φ̇a3)̇. (21)

With the help of Eq. (20) one gets the expression for the Hubble parameter from Eq. (20)6:

3H̃ =
ḟ

f
− φ̇

φ
=

ḟ

f
− 2f0

f(3 + 2w)

t̃
∫

const

(

f

f0
+ ρ̃0

)

dt̃

=
ḟ

f
− 2(c+E − c−/E + c

H
)

η(3 + 2w)(c+E + c−/E − ρ̃0)

=
6(1 + w)(c+E − c−/E) − 2c

H

η(3 + 2w)(c+E + c−/E − ρ̃0)
. (22)

Here c
H

can also be determined from initial data.
Solving (20) and (22) for the present time, one obtains the coefficient values as:

c+ =
1 + ρ̃0

2
+

ε0 + 3H̃0

2η
,

c− =
1 + ρ̃0

2
− ε0 + 3H̃0

2η
,

c
H

=
ηε0(3 + 2w)

2
− ε0 + 3H̃0

η
, (23)

5When calculating the right hand of the expression (17) we only considered the terms of order 1/
p

|w| from
(14), the last term from (17) was neglected due to the taken accuracy.

6Note that dt̃ = dE/(ηE).
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resulting in the following expression for the scale factor:

a

a0
=

(

c+E + c−/E − ρ̃0

)1/3

exp





−1

3(4 + 3w)

E
∫

1

(

c+E2 + c
H

E − c−

c+E2 − ρ̃0E + c−

)

dE

E





=

(

c+E +
c−

E
− ρ̃0

)
1+w

4+3w

exp

[−2c
H

(A − A0)

3(4 + 3w)
√

∆

]

, (24)

where

∆ ≡ 4c+c− − ρ̃2
0 = 1 + 2ρ̃0 − (3H̃0 + ε0)

2/η2

=
−3

8 + 6w

[

H̃0 − ε0(1 + w)
]2

,

A(E) ≡ arctan[(2c+E − ρ̃0)/
√

∆]. (25)

φ =
(

c+E + c−/E − ρ̃0

)
1

4+3w exp

[

2cH(A − A0)

(4 + 3w)
√

∆

]

. (26)

In order to keep ∆ positive, it is necessary to set w to be rather large (|w| >> 1) and negative7.
In the GR case |w| → ∞ and expression (24) tends to the well known Friedman solution

with acosmological constant:

HFr =
1√
3
· E + Ecr

E − Ecr
,

Ecr ≡
√

3H̃0 − 1√
3H̃0 + 1

,

ηFr =
√

3 , (27)

aFr

a0
=

(
√

3H̃0 + 1)2/3(E − Ecr)
2/3

(4E)1/3
. (28)

It is necessary to note that in this case E = Ecr, ∆ = 0, a = 0, and the scale factor a(t) ex-
periences a kink (which is absent when ∆ > 0). The Big Bang corresponds to the moment
t1 ≈ −1.46Λ−1/2, Λ−1/2 ≈ 1010 years.

5 Non-singular cosmology

In BDΛ models, the scale factor may not vanish during it’s evolution back in time unlike in the
standard ΛCDM one. This is a “bounce” of the scale factor from it’s minimal value am 6= 0.
The bounce appears in case there is a local minimum of the scale factor greater than zero. The
parameter phase-space for the bounce case starts from am(E) = 0, so, it is possible to obtain
the condition for a bounce from the equation (24). It has the following form:

∆ > 0 . (29)

Further, the time estimation for E at the bounce is:

Emin =
√

c−/c+ . (30)

7It is also importantly to mention that the w < 0 case in BD model opens the possibility for wormholes
existence without energy conditions violation, see [36, 37] for details.
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Figure 1: Left hand side represents a(t̃)/a0 according to the expression (24) for a dust-filled
universe with a bounce for the following parameter values: w = −1000 , q = −0.6, β = 0.45
for the upper line and β = 0.43653 for the lower one. Time unit is 1010 yr. Right hand
side: illustration (taken from NASA: http://map.gsfc.nasa.gov) for a( t̃)/a0 in ΛCDM-theory,
corresponding to the Friedman solution.

The exact equality Em =
√

c−/c+ is satisfied when ∆ = 0, e.q. when the scale factor vanishes
at the local minimum. Such a scenario excludes the initial singularity and leaves the scale factor
regular and continuous everywhere, including during the bounce (see (22)).

It is possible to estimate the numerical values of the scale factor ã(t) and ∆ at the bounce
from the following arguments. The cosmological microwave background radiation (CMBR)
indicates that the Universe was hot and radiation-dominated at early stages of it’s evolution
[38]. Using the expression for an adiabatic expansion ahot/a0 = 4 · 10−5 [39] we can obtain the
value of ∆ at the bounce for |w| >> 1 from the equation (18), so that:

∆ ≈ 2ρ̃0a
3
m/a3

0 < 2ρ̃0a
3
hot/a

3
0 ≈ 2.6 · 10−14 (31)

This tiny value of ∆ can only be achieved in a nearly flat Universe, i.e. when 1 + q0 − β ≈ 0.
This result states that the LLR bound on w remains in agreement with the cosmological one in
BDΛ model, as well as with the flatness of the Universe.

The model under consideration, as well as the usual singular cosmology8 of [1] is not ap-
plicable for the hot stage of the Universe. Thus the discussed results should only be used to
obtain initial values for the hot Universe during the evolution back in time study.

6 Solution for a hot Universe

The analytical study of the functions behavior near the bounce can be done only for an ultra-
relativistic pressure. During the hot phase when p = 1

3ρ equations (8-10) lead to the following
expression:

˙̃H + 2H̃2 =
1

6

(

−wε2 +
6 + 8w

3 + 2w

)

≡ Q(t̃). (32)

When w < −1.5, we obtain positive value of Q.
In the FRW case (when ε = 0 and |w| → ∞), from equation (32) it is possible to obtain

8The article [1] presents an analytical solution for ∆ < 0, w > 0.
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expressions for the hot stage that are similar to Eqs (27-28):

HFr =
1√
3
· U + 1

U − 1
,

U(τ̃) ≡ exp

(

4τ̃√
3

)

,

aFr

ahot
=

[

(U − 1)2Uhot

(Uhot − 1)2U

]1/4

. (33)

Here a new variable τ̃ is introduced. It represents a dimensionless time, that is a measure from
the scale factor minimum (τ̃ − t̃)/

√
Λ is equal to the age of the Universe and the subscript “hot”

corresponds to the transition from the hot stage to the cold one.
The derivatives of the scale factor (33) are singular (as well as for the FRW case in the

matter-dominated Universe — see (27-28)). Remarkably, when ∆ → 0 is in the cold phase, the
second derivative ä goes to +∞ at the bounce while it goes to −∞ in the vicinity of the bounce.
Therefore the Hubble function appears to be rapidly growing when ∆ → 0. The situation has
to be similar to the case of the radiation-dominated Universe. Since the hot phase matches
large values of H̃, it ends for a short time interval τ̃ . Therefore, when |w| >> 1 and ε << 1 the
solution of BDΛ is nearly indistinguishable from the FRW one (except in the bounce region).

Further, we consider the series expansion of the scale factor a(τ̃ ) against τ̃ near the local
minimum (bounce). Keeping the terms up to the fourth order, it is possible to obtain:

a = am +
1

2
am

˙̃Hmτ̃2 − 1

12
amb2 ˙̃H2

mτ̃4 + .... (34)

Here, ˙̃Hm and b are constants; ˙̃Hm corresponds to the second derivative of the scale factor at

the bounce, hence it should be positive when am > 0: ˙̃Hm > 0. Therefore, the equations for
the Hubble function and it’s first derivative up to second order on τ̃ are:

H̃2 = ˙̃H2
mτ̃2 , ˙̃H =

˙̃Hm(1 − b2 ˙̃Hmτ̃2)

1 + ˙̃Hmτ̃2/2
− ˙̃H2

mτ̃2 . (35)

After substituting this into (32), one gets:

ä

a
+

ȧ2

a2
=

˙̃Hm

[

1 + τ̃2 ˙̃Hm

(

3
2 − b2

)

]

(1 + ˙̃Hmτ̃2/2)2
= Q > 0 (36)

The last inequality is satisfied automatically (see equation (32)) and is valid only when 0 < b2 < 3/2.

From (34), one notices that at τ̃1 = 1/

√

˙̃Hmb2 the second derivative of the scale factor
changes its sign (τ̃1 is an inflection point). So we consider an additional scale factor inflection

point compared to the FRW case. At the time τ̃2 =
√

3/

√

˙̃Hmb2 =
√

3τ̃1, the first derivative of
the scale factor changes its sign. Hence, the solutions for the hot phase and the cold one should
be matched along the τ̃1 to τ̃2 interval.

When ˙̃Hm is large9 and b is small, starting from the time τ̃1, the second derivative of the
scale factor rapidly goes to a large negative value (during the time interval of order of τ̃1).
Meanwhile the Hubble function remains positive (up to the moment τ̃2). Therefore, along the
τ̃1 to τ̃2 interval the solution for the hot phase can be matched to the cold phase solution.

Varying the values of am, ˙̃Hm and b, one could achieve a smooth connection.

9Here and below we compare with the unit value
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7 Discussion and Conclusions

In this paper, we have demonstrated that the Friedman solution with a cosmological term is a
degenerated case of a more generic cosmology (for example, the BDΛ one as a ground effective
approximation).

In standard FRW cosmology, the graph of the solution of the scale factor a(t) has a form of
a vertical line before vanishing (the bounce is possible afterwards); in the BDΛ case

• with w > 0 the graph of the scale factor a(t) vanishes with a finit slope (first derivative
remains finite at a = 0);

• when w < 0 the graph of the scale factor a(t) does not reach zero (and a bounce occurs),
so all functions remain regular.

Further, an adequate model with a bounce can be obtained numerically because of the
complicated structure of the theory. Here it is importantly to note that the parameter k (we
considered the case k = 0 in this paper) describes the flatness type of the Universe and could
provide a leading contribution near the bounce due to the the scale factor smallness. The hot
phase also implies the presence of a non-vanishing pressure (we considered p = 0) which leads to
the inability of obtaining an analytical solution for the hot phase. The presence of the bounce
in the BDΛ cosmological solution allows to avoid one of the greatest problem of cosmology: the
initial singularity.

Moreover, we would like to point out that the appearance of a bounce instead of a singularity
is ratter a common effect in gravity models when an additional scalar or tensor contribution is
taken into account. For example, when studying the interplay between curvature and Maxwell
terms in Gauss-Bonnet gravity one encounters an effect of the same nature when the singularity
is changed by a local minimum [40]. The same effects occur in Gauss-Bonnet cosmology with
additional fields [41]. A bounce appearance was also discovered in many new (sometimes exotic)
models with additional terms (some examples of bounce appearance can be found at [42, 43, 44,
45].) and in Loop Quantum Gravity [46, 47]. So, this effect is rather common and natural from
the mathematical point of view (changing the balance between different term contributions)
and can be used to obtain new (stronger) estimations of model parameters. So, based on the
condition of existence of a bounce and, so, from Eq. (31) one can put a new limit on the BD
parameter w in the form

|w| > 1040, w < 0. (37)

This limitation is much stronger than the existing experimental one (|w| > 50000). Note, that
these huge values (of order of 1040) are rather common in theoretical physics and cosmology.
Such values provide an addition argument on the Mach principle non-observability (but, on the
other hand, do not prohibit its existence). Future developments will show the connection of
these values with reality.

Finally, we have to emphasis that one can treate BD theory as GR one with scalar field
including a potential in a specific form. For small values of w (when w < −1/2) the conventinal
inflation is prevented because of potential properties [49]. Further, when w < −3/2 it seems
that the field has a negative kinetic term and, therefore, represents a phantom field. Solutions of
such type, really, could be unphysical ones (see, for example, [48]). Unlike this in BD theory the
scalar field is usually not coupled with stress-energy components and is treated as independent
(geometrical, for example) part of field equations. Therefore, the situation becomes a physical
one. In the same situation Coule [53] suggested to apply the Zeldovich argument to “close”
bounces but [54] contained some entropy problems. In the case when w < −4/3 (Eq. 26) the
bounce appearance also becomes possible [50, 51, 52].

At last, it is possible to extend the consideration by taking the perturbations into account
[55] and it could be a good test for BDΛ model with additional ideas like, for example, [56].
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